2,656 research outputs found

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery

    Future internet enablers for VGI applications

    No full text
    This paper presents the authors experiences with the development of mobile Volunteered Geographic Information (VGI) applications in the context of the ENVIROFI project and Future Internet Public Private Partnership (FI-PPP) FP7 research programme.FI-PPP has an ambitious goal of developing a set of Generic FI Enablers (GEs) - software and hardware tools that will simplify development of thematic future internet applications. Our role in the programme was to provide requirements and assess the usability of the GEs from the point of view of the environmental usage area, In addition, we specified and developed three proof of concept implementations of environmental FI applications, and a set of specific environmental enablers (SEs) complementing the functionality offered by GEs. Rather than trying to rebuild the whole infrastructure of the Environmental Information Space (EIS), we concentrated on two aspects: (1) how to assure the existing and future EIS services and applications can be integrated and reused in FI context; and (2) how to profit from the GEs in future environmental applications.This paper concentrates on the GEs and SEs which were used in two of the ENVIROFI pilots which are representative for the emerging class of Volunteered Geographic Information (VGI) use-cases: one of them is pertinent to biodiversity and another to influence of weather and airborne pollution on users’ wellbeing. In VGI applications, the EIS and SensorWeb overlap with the Social web and potentially huge amounts of information from mobile citizens needs to be assessed and fused with the observations from official sources. On the whole, the authors are confident that the FI-PPP programme will greatly influence the EIS, but the paper also warns of the shortcomings in the current GE implementations and provides recommendations for further developments
    • 

    corecore