1,004 research outputs found

    Self-Referential Noise and the Synthesis of Three-Dimensional Space

    Get PDF
    Generalising results from Godel and Chaitin in mathematics suggests that self-referential systems contain intrinsic randomness. We argue that this is relevant to modelling the universe and show how three-dimensional space may arise from a non-geometric order-disorder model driven by self-referential noise.Comment: Figure labels correcte

    Unguarded Recursion on Coinductive Resumptions

    Full text link
    We study a model of side-effecting processes obtained by starting from a monad modelling base effects and adjoining free operations using a cofree coalgebra construction; one thus arrives at what one may think of as types of non-wellfounded side-effecting trees, generalizing the infinite resumption monad. Correspondingly, the arising monad transformer has been termed the coinductive generalized resumption transformer. Monads of this kind have received some attention in the recent literature; in particular, it has been shown that they admit guarded iteration. Here, we show that they also admit unguarded iteration, i.e. form complete Elgot monads, provided that the underlying base effect supports unguarded iteration. Moreover, we provide a universal characterization of the coinductive resumption monad transformer in terms of coproducts of complete Elgot monads.Comment: 47 pages, extended version of http://www.sciencedirect.com/science/article/pii/S157106611500079

    Corecursive Algebras, Corecursive Monads and Bloom Monads

    Full text link
    An algebra is called corecursive if from every coalgebra a unique coalgebra-to-algebra homomorphism exists into it. We prove that free corecursive algebras are obtained as coproducts of the terminal coalgebra (considered as an algebra) and free algebras. The monad of free corecursive algebras is proved to be the free corecursive monad, where the concept of corecursive monad is a generalization of Elgot's iterative monads, analogous to corecursive algebras generalizing completely iterative algebras. We also characterize the Eilenberg-Moore algebras for the free corecursive monad and call them Bloom algebras

    Categorical Semantics for Functional Reactive Programming with Temporal Recursion and Corecursion

    Full text link
    Functional reactive programming (FRP) makes it possible to express temporal aspects of computations in a declarative way. Recently we developed two kinds of categorical models of FRP: abstract process categories (APCs) and concrete process categories (CPCs). Furthermore we showed that APCs generalize CPCs. In this paper, we extend APCs with additional structure. This structure models recursion and corecursion operators that are related to time. We show that the resulting categorical models generalize those CPCs that impose an additional constraint on time scales. This constraint boils down to ruling out ω\omega-supertasks, which are closely related to Zeno's paradox of Achilles and the tortoise.Comment: In Proceedings MSFP 2014, arXiv:1406.153
    • …
    corecore