211 research outputs found

    Accuracy guarantees for L1-recovery

    Full text link
    We discuss two new methods of recovery of sparse signals from noisy observation based on â„“1\ell_1- minimization. They are closely related to the well-known techniques such as Lasso and Dantzig Selector. However, these estimators come with efficiently verifiable guaranties of performance. By optimizing these bounds with respect to the method parameters we are able to construct the estimators which possess better statistical properties than the commonly used ones. We also show how these techniques allow to provide efficiently computable accuracy bounds for Lasso and Dantzig Selector. We link our performance estimations to the well known results of Compressive Sensing and justify our proposed approach with an oracle inequality which links the properties of the recovery algorithms and the best estimation performance when the signal support is known. We demonstrate how the estimates can be computed using the Non-Euclidean Basis Pursuit algorithm

    Estimation with Norm Regularization

    Full text link
    Analysis of non-asymptotic estimation error and structured statistical recovery based on norm regularized regression, such as Lasso, needs to consider four aspects: the norm, the loss function, the design matrix, and the noise model. This paper presents generalizations of such estimation error analysis on all four aspects compared to the existing literature. We characterize the restricted error set where the estimation error vector lies, establish relations between error sets for the constrained and regularized problems, and present an estimation error bound applicable to any norm. Precise characterizations of the bound is presented for isotropic as well as anisotropic subGaussian design matrices, subGaussian noise models, and convex loss functions, including least squares and generalized linear models. Generic chaining and associated results play an important role in the analysis. A key result from the analysis is that the sample complexity of all such estimators depends on the Gaussian width of a spherical cap corresponding to the restricted error set. Further, once the number of samples nn crosses the required sample complexity, the estimation error decreases as cn\frac{c}{\sqrt{n}}, where cc depends on the Gaussian width of the unit norm ball.Comment: Fixed technical issues. Generalized some result
    • …
    corecore