296,490 research outputs found

    On Coset Leader Graphs of LDPC Codes

    Full text link
    Our main technical result is that, in the coset leader graph of a linear binary code of block length n, the metric balls spanned by constant-weight vectors grow exponentially slower than those in {0,1}n\{0,1\}^n. Following the approach of Friedman and Tillich (2006), we use this fact to improve on the first linear programming bound on the rate of LDPC codes, as the function of their minimal distance. This improvement, combined with the techniques of Ben-Haim and Lytsin (2006), improves the rate vs distance bounds for LDPC codes in a significant sub-range of relative distances

    Weighted counting of solutions to sparse systems of equations

    Full text link
    Given complex numbers w1,,wnw_1, \ldots, w_n, we define the weight w(X)w(X) of a set XX of 0-1 vectors as the sum of w1x1wnxnw_1^{x_1} \cdots w_n^{x_n} over all vectors (x1,,xn)(x_1, \ldots, x_n) in XX. We present an algorithm, which for a set XX defined by a system of homogeneous linear equations with at most rr variables per equation and at most cc equations per variable, computes w(X)w(X) within relative error ϵ>0\epsilon >0 in (rc)O(lnnlnϵ)(rc)^{O(\ln n-\ln \epsilon)} time provided wjβ(rc)1|w_j| \leq \beta (r \sqrt{c})^{-1} for an absolute constant β>0\beta >0 and all j=1,,nj=1, \ldots, n. A similar algorithm is constructed for computing the weight of a linear code over Fp{\Bbb F}_p. Applications include counting weighted perfect matchings in hypergraphs, counting weighted graph homomorphisms, computing weight enumerators of linear codes with sparse code generating matrices, and computing the partition functions of the ferromagnetic Potts model at low temperatures and of the hard-core model at high fugacity on biregular bipartite graphs.Comment: The exposition is improved, a couple of inaccuracies correcte

    Quantum Locally Testable Codes

    Full text link
    We initiate the study of quantum Locally Testable Codes (qLTCs). We provide a definition together with a simplification, denoted sLTCs, for the special case of stabilizer codes, together with some basic results using those definitions. The most crucial parameter of such codes is their soundness, R(δ)R(\delta), namely, the probability that a randomly chosen constraint is violated as a function of the distance of a word from the code (δ\delta, the relative distance from the code, is called the proximity). We then proceed to study limitations on qLTCs. In our first main result we prove a surprising, inherently quantum, property of sLTCs: for small values of proximity, the better the small-set expansion of the interaction graph of the constraints, the less sound the qLTC becomes. This phenomenon, which can be attributed to monogamy of entanglement, stands in sharp contrast to the classical setting. The complementary, more intuitive, result also holds: an upper bound on the soundness when the code is defined on poor small-set expanders (a bound which turns out to be far more difficult to show in the quantum case). Together we arrive at a quantum upper-bound on the soundness of stabilizer qLTCs set on any graph, which does not hold in the classical case. Many open questions are raised regarding what possible parameters are achievable for qLTCs. In the appendix we also define a quantum analogue of PCPs of proximity (PCPPs) and point out that the result of Ben-Sasson et. al. by which PCPPs imply LTCs with related parameters, carries over to the sLTCs. This creates a first link between qLTCs and quantum PCPs.Comment: Some of the results presented here appeared in an initial form in our quant-ph submission arXiv:1301.3407. This is a much extended and improved version. 30 pages, no figure

    Estimates on the Size of Symbol Weight Codes

    Full text link
    The study of codes for powerlines communication has garnered much interest over the past decade. Various types of codes such as permutation codes, frequency permutation arrays, and constant composition codes have been proposed over the years. In this work we study a type of code called the bounded symbol weight codes which was first introduced by Versfeld et al. in 2005, and a related family of codes that we term constant symbol weight codes. We provide new upper and lower bounds on the size of bounded symbol weight and constant symbol weight codes. We also give direct and recursive constructions of codes for certain parameters.Comment: 14 pages, 4 figure

    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs

    Get PDF
    A novel technique, based on the pseudo-random properties of certain graphs known as expanders, is used to obtain novel simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling, and then regrouping the code coordinates. For any fixed (small) rate, and for a sufficiently large alphabet, the codes thus obtained lie above the Zyablov bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic good construction is obtained which applies to small alphabets (say, GF(2)) as well. Although these concatenated codes lie below the Zyablov bound, they are still superior to previously known explicit constructions in the zero-rate neighborhood

    Multiply Constant-Weight Codes and the Reliability of Loop Physically Unclonable Functions

    Full text link
    We introduce the class of multiply constant-weight codes to improve the reliability of certain physically unclonable function (PUF) response. We extend classical coding methods to construct multiply constant-weight codes from known qq-ary and constant-weight codes. Analogues of Johnson bounds are derived and are shown to be asymptotically tight to a constant factor under certain conditions. We also examine the rates of the multiply constant-weight codes and interestingly, demonstrate that these rates are the same as those of constant-weight codes of suitable parameters. Asymptotic analysis of our code constructions is provided

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse
    corecore