29,456 research outputs found

    Blind Compressed Sensing Over a Structured Union of Subspaces

    Full text link
    This paper addresses the problem of simultaneous signal recovery and dictionary learning based on compressive measurements. Multiple signals are analyzed jointly, with multiple sensing matrices, under the assumption that the unknown signals come from a union of a small number of disjoint subspaces. This problem is important, for instance, in image inpainting applications, in which the multiple signals are constituted by (incomplete) image patches taken from the overall image. This work extends standard dictionary learning and block-sparse dictionary optimization, by considering compressive measurements, e.g., incomplete data). Previous work on blind compressed sensing is also generalized by using multiple sensing matrices and relaxing some of the restrictions on the learned dictionary. Drawing on results developed in the context of matrix completion, it is proven that both the dictionary and signals can be recovered with high probability from compressed measurements. The solution is unique up to block permutations and invertible linear transformations of the dictionary atoms. The recovery is contingent on the number of measurements per signal and the number of signals being sufficiently large; bounds are derived for these quantities. In addition, this paper presents a computationally practical algorithm that performs dictionary learning and signal recovery, and establishes conditions for its convergence to a local optimum. Experimental results for image inpainting demonstrate the capabilities of the method

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page
    • …
    corecore