20,698 research outputs found

    Random graphs containing arbitrary distributions of subgraphs

    Full text link
    Traditional random graph models of networks generate networks that are locally tree-like, meaning that all local neighborhoods take the form of trees. In this respect such models are highly unrealistic, most real networks having strongly non-tree-like neighborhoods that contain short loops, cliques, or other biconnected subgraphs. In this paper we propose and analyze a new class of random graph models that incorporates general subgraphs, allowing for non-tree-like neighborhoods while still remaining solvable for many fundamental network properties. Among other things we give solutions for the size of the giant component, the position of the phase transition at which the giant component appears, and percolation properties for both site and bond percolation on networks generated by the model.Comment: 12 pages, 6 figures, 1 tabl

    Where Graph Topology Matters: The Robust Subgraph Problem

    Full text link
    Robustness is a critical measure of the resilience of large networked systems, such as transportation and communication networks. Most prior works focus on the global robustness of a given graph at large, e.g., by measuring its overall vulnerability to external attacks or random failures. In this paper, we turn attention to local robustness and pose a novel problem in the lines of subgraph mining: given a large graph, how can we find its most robust local subgraph (RLS)? We define a robust subgraph as a subset of nodes with high communicability among them, and formulate the RLS-PROBLEM of finding a subgraph of given size with maximum robustness in the host graph. Our formulation is related to the recently proposed general framework for the densest subgraph problem, however differs from it substantially in that besides the number of edges in the subgraph, robustness also concerns with the placement of edges, i.e., the subgraph topology. We show that the RLS-PROBLEM is NP-hard and propose two heuristic algorithms based on top-down and bottom-up search strategies. Further, we present modifications of our algorithms to handle three practical variants of the RLS-PROBLEM. Experiments on synthetic and real-world graphs demonstrate that we find subgraphs with larger robustness than the densest subgraphs even at lower densities, suggesting that the existing approaches are not suitable for the new problem setting.Comment: 13 pages, 10 Figures, 3 Tables, to appear at SDM 2015 (9 pages only

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    Subgraphs in random networks

    Full text link
    Understanding the subgraph distribution in random networks is important for modelling complex systems. In classic Erdos networks, which exhibit a Poissonian degree distribution, the number of appearances of a subgraph G with n nodes and g edges scales with network size as \mean{G} ~ N^{n-g}. However, many natural networks have a non-Poissonian degree distribution. Here we present approximate equations for the average number of subgraphs in an ensemble of random sparse directed networks, characterized by an arbitrary degree sequence. We find new scaling rules for the commonly occurring case of directed scale-free networks, in which the outgoing degree distribution scales as P(k) ~ k^{-\gamma}. Considering the power exponent of the degree distribution, \gamma, as a control parameter, we show that random networks exhibit transitions between three regimes. In each regime the subgraph number of appearances follows a different scaling law, \mean{G} ~ N^{\alpha}, where \alpha=n-g+s-1 for \gamma<2, \alpha=n-g+s+1-\gamma for 2<\gamma<\gamma_c, and \alpha=n-g for \gamma>\gamma_c, s is the maximal outdegree in the subgraph, and \gamma_c=s+1. We find that certain subgraphs appear much more frequently than in Erdos networks. These results are in very good agreement with numerical simulations. This has implications for detecting network motifs, subgraphs that occur in natural networks significantly more than in their randomized counterparts.Comment: 8 pages, 5 figure
    corecore