6 research outputs found

    Modules on involutive quantales: canonical Hilbert structure, applications to sheaf theory

    Full text link
    We explain the precise relationship between two module-theoretic descriptions of sheaves on an involutive quantale, namely the description via so-called Hilbert structures on modules and that via so-called principally generated modules. For a principally generated module satisfying a suitable symmetry condition we observe the existence of a canonical Hilbert structure. We prove that, when working over a modular quantal frame, a module bears a Hilbert structure if and only if it is principally generated and symmetric, in which case its Hilbert structure is necessarily the canonical one. We indicate applications to sheaves on locales, on quantal frames and even on sites.Comment: 21 pages, revised version accepted for publicatio

    Groupoid sheaves as quantale sheaves

    Get PDF
    Several notions of sheaf on various types of quantale have been proposed and studied in the last twenty five years. It is fairly standard that for an involutive quantale Q satisfying mild algebraic properties the sheaves on Q can be defined to be the idempotent self-adjoint Q-valued matrices. These can be thought of as Q-valued equivalence relations, and, accordingly, the morphisms of sheaves are the Q-valued functional relations. Few concrete examples of such sheaves are known, however, and in this paper we provide a new one by showing that the category of equivariant sheaves on a localic etale groupoid G (the classifying topos of G) is equivalent to the category of sheaves on its involutive quantale O(G). As a means towards this end we begin by replacing the category of matrix sheaves on Q by an equivalent category of complete Hilbert Q-modules, and we approach the envisaged example where Q is an inverse quantal frame O(G) by placing it in the wider context of stably supported quantales, on one hand, and in the wider context of a module theoretic description of arbitrary actions of \'etale groupoids, both of which may be interesting in their own right.Comment: 62 pages. Structure of preprint has changed. It now contains the contents of former arXiv:0807.3859 (withdrawn), and the definition of Q-sheaf applies only to inverse quantal frames (Hilbert Q-modules with enough sections are given no special name for more general quantales

    Grothendieck quantaloids for allegories of enriched categories

    Full text link
    For any small involutive quantaloid Q we define, in terms of symmetric quantaloid-enriched categories, an involutive quantaloid Rel(Q) of Q-sheaves and relations, and a category Sh(Q) of Q-sheaves and functions; the latter is equivalent to the category of symmetric maps in the former. We prove that Rel(Q) is the category of relations in a topos if and only if Q is a modular, locally localic and weakly semi-simple quantaloid; in this case we call Q a Grothendieck quantaloid. It follows that Sh(Q) is a Grothendieck topos whenever Q is a Grothendieck quantaloid. Any locale L is a Grothendieck quantale, and Sh(L) is the topos of sheaves on L. Any small quantaloid of closed cribles is a Grothendieck quantaloid, and if Q is the quantaloid of closed cribles in a Grothendieck site (C,J) then Sh(Q) is equivalent to the topos Sh(C,J). Any inverse quantal frame is a Grothendieck quantale, and if O(G) is the inverse quantal frame naturally associated with an \'etale groupoid G then Sh(O(G)) is the classifying topos of G.Comment: 28 pages, final versio
    corecore