1,213 research outputs found

    Positivity of relative canonical bundles and applications

    Full text link
    Given a family f:XSf:\mathcal X \to S of canonically polarized manifolds, the unique K\"ahler-Einstein metrics on the fibers induce a hermitian metric on the relative canonical bundle KX/S\mathcal K_{\mathcal X/S}. We use a global elliptic equation to show that this metric is strictly positive on X\mathcal X, unless the family is infinitesimally trivial. For degenerating families we show that the curvature form on the total space can be extended as a (semi-)positive closed current. By fiber integration it follows that the generalized Weil-Petersson form on the base possesses an extension as a positive current. We prove an extension theorem for hermitian line bundles, whose curvature forms have this property. This theorem can be applied to a determinant line bundle associated to the relative canonical bundle on the total space. As an application the quasi-projectivity of the moduli space Mcan\mathcal M_{\text{can}} of canonically polarized varieties follows. The direct images RnpfΩX/Sp(KX/Sm)R^{n-p}f_*\Omega^p_{\mathcal X/S}(\mathcal K_{\mathcal X/S}^{\otimes m}), m>0m > 0, carry natural hermitian metrics. We prove an explicit formula for the curvature tensor of these direct images. We apply it to the morphisms SpTSRpfΛpTX/SS^p \mathcal T_S \to R^pf_*\Lambda^p\mathcal T_{\mathcal X/S} that are induced by the Kodaira-Spencer map and obtain a differential geometric proof for hyperbolicity properties of Mcan\mathcal M_{\text{can}}.Comment: Supercedes arXiv:0808.3259v4 and arXiv:1002.4858v2. To appear in Invent. mat

    Floer cohomology of torus fibers and real lagrangians in Fano toric manifolds

    Full text link
    In this article, we consider the Floer cohomology (with Z2\Z_2 coefficients) between torus fibers and the real Lagrangian in Fano toric manifolds. We first investigate the conditions under which the Floer cohomology is defined, and then develop a combinatorial description of the Floer complex based on the polytope of the toric manifold. We show that if the Floer cohomology is defined, and the Floer cohomology of the torus fiber is non-zero, then the Floer cohomology of the pair is non-zero. We use this result to develop some applications to non-displaceability and the minimum number of intersection points under Hamiltonian isotopy.Comment: v2: Modified exposition and new corollary adde

    Period Mappings and Ampleness of the Hodge line bundle

    Full text link
    We discuss progress towards a conjectural Hodge theoretic completion of a period map. The completion is defined, and we conjecture that it admits the structure of a compact complex analytic variety. The conjecture is proved when the image of the period map has dimension 1,2. Assuming the conjecture holds, we then prove that the augmented Hodge line bundle extends to an ample line bundle on the completion. In particular, the completion is a projective algebraic variety that compactifies the image, analogous to the Satake-Baily-Borel compactification.Comment: 62 pages. v2 significant revision of the initial submission (v1); v3 further improvements and new references adde

    Lagrangian spheres in Del Pezzo surfaces

    Full text link
    Lagrangian spheres in the symplectic Del Pezzo surfaces arising as blow-ups of the complex projective plane in 4 or fewer points are classified up to Lagrangian isotopy. Unlike the case of the 5-point blow-up, there is no Lagrangian knotting.Comment: 48 pages, 2 figures; referee's corrections and suggestions incorporated

    Semipositivity theorems for moduli problems

    Full text link
    We prove some semipositivity theorems for singular varieties coming from graded polarizable admissible variations of mixed Hodge structure. As an application, we obtain that the moduli functor of stable varieties is semipositive in the sense of Koll\'ar. This completes Koll\'ar's projectivity criterion for the moduli spaces of higher-dimensional stable varieties.Comment: 19 pages, v2: very minor revision, v3: major revisions, v4: revision following referee's report, v5: very minor modification
    corecore