401 research outputs found

    Array methods in statistics with applications to the modelling and forecasting of mortality

    Get PDF
    In this thesis we investigate the application of array methods for the smoothing of multi-dimensional arrays with particular reference to mortality data. A broad outline follows. We begin with an introduction to smoothing in one dimension, followed by a discussion of multi-dimensional smoothing methods. We then move on to review and develop the array methods of Currie et al. (2006), and show how these methods can be applied in additive models even when the data do not have a standard array structure. Finally we discuss the Lee-Carter model and show how we fulfilled the requirements of the CASE studentship. Our main contributions are: firstly we extend the array methods of Currie et al. (2006) to cope with more general covariance structures; secondly we describe an additive model of mortality which decomposes the mortality surface into a smooth twodimensional surface and a series of smooth age dependent shocks within years; thirdly we describe an additive model of mortality for data with a Lexis triangle structure

    Twenty years of P-splines

    Get PDF
    P-splines first appeared in the limelight twenty years ago. Since then they have become popular in applications and in theoretical work. The combination of a rich B-spline basis and a simple difference penalty lends itself well to a variety of generalizations, because it is based on regression. In effect, P-splines allow the building of a “backbone” for the “mixing and matching” of a variety of additive smooth structure components, while inviting all sorts of extensions: varying-coefficient effects, signal (functional) regressors, two-dimensional surfaces, non-normal responses, quantile (expectile) modelling, among others. Strong connections with mixed models and Bayesian analysis have been established. We give an overview of many of the central developments during the first two decades of P-splines.Peer Reviewe

    Twenty years of P-splines

    Get PDF
    P-splines first appeared in the limelight twenty years ago. Since then they have become popular in applications and in theoretical work. The combination of a rich B-spline basis and a simple difference penalty lends itself well to a variety of generalizations, because it is based on regression. In effect, P-splines allow the building of a “backbone” for the “mixing and matching” of a variety of additive smooth structure components, while inviting all sorts of extensions: varying-coefficient effects, signal (functional) regressors, two-dimensional surfaces, non-normal responses, quantile (expectile) modelling, among others. Strong connections with mixed models and Bayesian analysis have been established. We give an overview of many of the central developments during the first two decades of P-splines

    Organ-focused mutual information for nonrigid multimodal registration of liver CT and Gd–EOB–DTPA-enhanced MRI

    Full text link
    Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01)

    Feature-Based Models for Three-Dimensional Data Fitting.

    Get PDF
    There are numerous techniques available for fitting a surface to any supplied data set. The feature-based modeling technique takes advantage of the known, geometric shape of the data by deforming a model having this generic shape to approximate the data. The model is constructed as a rational B-spline surface with characteristic features superimposed on its definition. The first step in the fitting process is to align the model with a data set using the center of mass, principal axes and/or landmarks. Using this initial orientation, the position, rotation and scale parameters are optimized using a Newton-type optimization of a least squares cost function. Once aligned, features embedded within the model, corresponding to pertinent characteristics of the shape, are used to improve the fit of the model to the data. Finally, the control vertex weights and positions of the rational B-spline model are optimized to approximate the data to within a specified tolerance. Since the characteristic features are defined within the model a creation, important measures are easily extracted from a data set, once fit. The feature-based modeling approach is demonstrated in two-dimensions by the fitting of five facial, silhouette profiles and in three-dimensions by the fitting of eleven human foot scans. The algorithm is tested for sensitivity to data distribution and structure and the extracted measures are tested for repeatability and accuracy. Limitations within the current implementation, future work and potential applications are also provided

    Feedforward neural networks with ReLU activation functions are linear splines

    Get PDF
    In this thesis the approximation properties of feedforward articial neural networks with one hidden layer and ReLU activation functions are examined. It is shown that functions of these kind are linear splines and the number of spline knots depend on the number of nodes in the network. In fact an upper bound can be derived for the number of knots. Furthermore, the positioning of the knots depend on the optimization of the adjustable parameters of the network. A numerical example is given where the network models are compared to linear interpolating splines with equidistant positioned knots
    • 

    corecore