69 research outputs found

    Joint Wyner-Ziv/Dirty Paper coding by modulo-lattice modulation

    Full text link
    The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gel'fand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative scheme for the quadratic-Gaussian case, which merges source and channel coding. This scheme achieves the optimal performance by a applying modulo-lattice modulation to the analog source. Thus it saves the complexity of quantization and channel decoding, and remains with the task of "shaping" only. Furthermore, for high signal-to-noise ratio (SNR), the scheme approaches the optimal performance using an SNR-independent encoder, thus it is robust to unknown SNR at the encoder.Comment: Submitted to IEEE Transactions on Information Theory. Presented in part in ISIT-2006, Seattle. New version after revie

    Wyner-Ziv Coding over Broadcast Channels: Digital Schemes

    Full text link
    This paper addresses lossy transmission of a common source over a broadcast channel when there is correlated side information at the receivers, with emphasis on the quadratic Gaussian and binary Hamming cases. A digital scheme that combines ideas from the lossless version of the problem, i.e., Slepian-Wolf coding over broadcast channels, and dirty paper coding, is presented and analyzed. This scheme uses layered coding where the common layer information is intended for both receivers and the refinement information is destined only for one receiver. For the quadratic Gaussian case, a quantity characterizing the overall quality of each receiver is identified in terms of channel and side information parameters. It is shown that it is more advantageous to send the refinement information to the receiver with "better" overall quality. In the case where all receivers have the same overall quality, the presented scheme becomes optimal. Unlike its lossless counterpart, however, the problem eludes a complete characterization

    Joint Source-Channel Coding with Time-Varying Channel and Side-Information

    Full text link
    Transmission of a Gaussian source over a time-varying Gaussian channel is studied in the presence of time-varying correlated side information at the receiver. A block fading model is considered for both the channel and the side information, whose states are assumed to be known only at the receiver. The optimality of separate source and channel coding in terms of average end-to-end distortion is shown when the channel is static while the side information state follows a discrete or a continuous and quasiconcave distribution. When both the channel and side information states are time-varying, separate source and channel coding is suboptimal in general. A partially informed encoder lower bound is studied by providing the channel state information to the encoder. Several achievable transmission schemes are proposed based on uncoded transmission, separate source and channel coding, joint decoding as well as hybrid digital-analog transmission. Uncoded transmission is shown to be optimal for a class of continuous and quasiconcave side information state distributions, while the channel gain may have an arbitrary distribution. To the best of our knowledge, this is the first example in which the uncoded transmission achieves the optimal performance thanks to the time-varying nature of the states, while it is suboptimal in the static version of the same problem. Then, the optimal \emph{distortion exponent}, that quantifies the exponential decay rate of the expected distortion in the high SNR regime, is characterized for Nakagami distributed channel and side information states, and it is shown to be achieved by hybrid digital-analog and joint decoding schemes in certain cases, illustrating the suboptimality of pure digital or analog transmission in general.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore