40,224 research outputs found

    Control Lyapunov Functions and Stabilization by Means of Continuous Time-Varying Feedback

    Get PDF
    For a general time-varying system, we prove that existence of an "Output Robust Control Lyapunov Function" implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well-known result towards feedback stabilization due to J. M. Coron and L. Rosier concerning stabilization of autonomous systems by means of time-varying periodic feedback.Comment: Submitted for possible publication to ESAIM Control, Optimisation and Calculus of Variation

    Time-varying Projected Dynamical Systems with Applications to Feedback Optimization of Power Systems

    Full text link
    This paper is concerned with the study of continuous-time, non-smooth dynamical systems which arise in the context of time-varying non-convex optimization problems, as for example the feedback-based optimization of power systems. We generalize the notion of projected dynamical systems to time-varying, possibly non-regular, domains and derive conditions for the existence of so-called Krasovskii solutions. The key insight is that for trajectories to exist, informally, the time-varying domain can only contract at a bounded rate whereas it may expand discontinuously. This condition is met, in particular, by feasible sets delimited via piecewise differentiable functions under appropriate constraint qualifications. To illustrate the necessity and usefulness of such a general framework, we consider a simple yet insightful power system example, and we discuss the implications of the proposed conditions for the design of feedback optimization schemes
    corecore