1,470 research outputs found

    Parity of transversals of Latin squares

    Get PDF
    We introduce a notion of parity for transversals, and use it to show that in Latin squares of order 2mod42 \bmod 4, the number of transversals is a multiple of 4. We also demonstrate a number of relationships (mostly congruences modulo 4) involving E1,,EnE_1,\dots, E_n, where EiE_i is the number of diagonals of a given Latin square that contain exactly ii different symbols. Let A(ij)A(i\mid j) denote the matrix obtained by deleting row ii and column jj from a parent matrix AA. Define tijt_{ij} to be the number of transversals in L(ij)L(i\mid j), for some fixed Latin square LL. We show that tabtcdmod2t_{ab}\equiv t_{cd}\bmod2 for all a,b,c,da,b,c,d and LL. Also, if LL has odd order then the number of transversals of LL equals tabt_{ab} mod 2. We conjecture that tac+tbc+tad+tbd0mod4t_{ac} + t_{bc} + t_{ad} + t_{bd} \equiv 0 \bmod 4 for all a,b,c,da,b,c,d. In the course of our investigations we prove several results that could be of interest in other contexts. For example, we show that the number of perfect matchings in a kk-regular bipartite graph on 2n2n vertices is divisible by 44 when nn is odd and k0mod4k\equiv0\bmod 4. We also show that perA(ac)+perA(bc)+perA(ad)+perA(bd)0mod4{\rm per}\, A(a \mid c)+{\rm per}\, A(b \mid c)+{\rm per}\, A(a \mid d)+{\rm per}\, A(b \mid d) \equiv 0 \bmod 4 for all a,b,c,da,b,c,d, when AA is an integer matrix of odd order with all row and columns sums equal to k2mod4k\equiv2\bmod4

    On the number of transversals in latin squares

    Full text link
    The logarithm of the maximum number of transversals over all latin squares of order nn is greater than n6(lnn+O(1))\frac{n}{6}(\ln n+ O(1))

    Hypergraphs and hypermatrices with symmetric spectrum

    Full text link
    It is well known that a graph is bipartite if and only if the spectrum of its adjacency matrix is symmetric. In the present paper, this assertion is dissected into three separate matrix results of wider scope, which are extended also to hypermatrices. To this end the concept of bipartiteness is generalized by a new monotone property of cubical hypermatrices, called odd-colorable matrices. It is shown that a nonnegative symmetric rr-matrix AA has a symmetric spectrum if and only if rr is even and AA is odd-colorable. This result also solves a problem of Pearson and Zhang about hypergraphs with symmetric spectrum and disproves a conjecture of Zhou, Sun, Wang, and Bu. Separately, similar results are obtained for the HH-spectram of hypermatrices.Comment: 17 pages. Corrected proof on p. 1

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for sd/2s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for d/2<sd\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    On some points-and-lines problems and configurations

    Get PDF
    We apply an old method for constructing points-and-lines configurations in the plane to study some recent questions in incidence geometry.Comment: 14 pages, numerous figures of point-and-line configurations; to appear in the Bezdek-50 special issue of Periodica Mathematica Hungaric
    corecore