531 research outputs found

    Completion and deficiency problems

    Full text link
    Given a partial Steiner triple system (STS) of order nn, what is the order of the smallest complete STS it can be embedded into? The study of this question goes back more than 40 years. In this paper we answer it for relatively sparse STSs, showing that given a partial STS of order nn with at most rεn2r \le \varepsilon n^2 triples, it can always be embedded into a complete STS of order n+O(r)n+O(\sqrt{r}), which is asymptotically optimal. We also obtain similar results for completions of Latin squares and other designs. This suggests a new, natural class of questions, called deficiency problems. Given a global spanning property P\mathcal{P} and a graph GG, we define the deficiency of the graph GG with respect to the property P\mathcal{P} to be the smallest positive integer tt such that the join GKtG\ast K_t has property P\mathcal{P}. To illustrate this concept we consider deficiency versions of some well-studied properties, such as having a KkK_k-decomposition, Hamiltonicity, having a triangle-factor and having a perfect matching in hypergraphs. The main goal of this paper is to propose a systematic study of these problems; thus several future research directions are also given

    Vertex covering with monochromatic pieces of few colours

    Full text link
    In 1995, Erd\H{o}s and Gy\'arf\'as proved that in every 22-colouring of the edges of KnK_n, there is a vertex cover by 2n2\sqrt{n} monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers r,sr,s, what is the smallest number pcr,s(Kn)\text{pc}_{r,s}(K_n) such that in every colouring of the edges of KnK_n with rr colours, there exists a vertex cover of KnK_n by pcr,s(Kn)\text{pc}_{r,s}(K_n) monochromatic paths using altogether at most ss different colours? For fixed integers r>sr>s and as nn\to\infty, we prove that pcr,s(Kn)=Θ(n1/χ)\text{pc}_{r,s}(K_n) = \Theta(n^{1/\chi}), where χ=max{1,2+2sr}\chi=\max{\{1,2+2s-r\}} is the chromatic number of the Kneser gr aph KG(r,rs)\text{KG}(r,r-s). More generally, if one replaces KnK_n by an arbitrary nn-vertex graph with fixed independence number α\alpha, then we have pcr,s(G)=O(n1/χ)\text{pc}_{r,s}(G) = O(n^{1/\chi}), where this time around χ\chi is the chromatic number of the Kneser hypergraph KG(α+1)(r,rs)\text{KG}^{(\alpha+1)}(r,r-s). This result is tight in the sense that there exist graphs with independence number α\alpha for which pcr,s(G)=Ω(n1/χ)\text{pc}_{r,s}(G) = \Omega(n^{1/\chi}). This is in sharp contrast to the case r=sr=s, where it follows from a result of S\'ark\"ozy (2012) that pcr,r(G)\text{pc}_{r,r}(G) depends only on rr and α\alpha, but not on the number of vertices. We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic dd-regular graphs

    An asymptotic multipartite Kühn-Osthus theorem

    Get PDF
    In this paper we prove an asymptotic multipartite version of a well-known theorem of K¨uhn and Osthus by establishing, for any graph H with chromatic number r, the asymptotic multipartite minimum degree threshold which ensures that a large r-partite graph G admits a perfect H-tiling. We also give the threshold for an H-tiling covering all but a linear number of vertices of G, in a multipartite analogue of results of Koml´os and of Shokoufandeh and Zhao

    A Geometric Theory for Hypergraph Matching

    Full text link
    We develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: 'space barriers' from convex geometry, and 'divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, we introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. We determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, our main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, we apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in 3-graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemer\'edi Theorem. Here we prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical we defer it to a subsequent paper.Comment: Accepted for publication in Memoirs of the American Mathematical Society. 101 pages. v2: minor changes including some additional diagrams and passages of expository tex

    Revolutionaries and spies: Spy-good and spy-bad graphs

    Get PDF
    We study a game on a graph GG played by rr {\it revolutionaries} and ss {\it spies}. Initially, revolutionaries and then spies occupy vertices. In each subsequent round, each revolutionary may move to a neighboring vertex or not move, and then each spy has the same option. The revolutionaries win if mm of them meet at some vertex having no spy (at the end of a round); the spies win if they can avoid this forever. Let σ(G,m,r)\sigma(G,m,r) denote the minimum number of spies needed to win. To avoid degenerate cases, assume |V(G)|\ge r-m+1\ge\floor{r/m}\ge 1. The easy bounds are then \floor{r/m}\le \sigma(G,m,r)\le r-m+1. We prove that the lower bound is sharp when GG has a rooted spanning tree TT such that every edge of GG not in TT joins two vertices having the same parent in TT. As a consequence, \sigma(G,m,r)\le\gamma(G)\floor{r/m}, where γ(G)\gamma(G) is the domination number; this bound is nearly sharp when γ(G)m\gamma(G)\le m. For the random graph with constant edge-probability pp, we obtain constants cc and cc' (depending on mm and pp) such that σ(G,m,r)\sigma(G,m,r) is near the trivial upper bound when r<clnnr<c\ln n and at most cc' times the trivial lower bound when r>clnnr>c'\ln n. For the hypercube QdQ_d with drd\ge r, we have σ(G,m,r)=rm+1\sigma(G,m,r)=r-m+1 when m=2m=2, and for m3m\ge 3 at least r39mr-39m spies are needed. For complete kk-partite graphs with partite sets of size at least 2r2r, the leading term in σ(G,m,r)\sigma(G,m,r) is approximately kk1rm\frac{k}{k-1}\frac{r}{m} when kmk\ge m. For k=2k=2, we have \sigma(G,2,r)=\bigl\lceil{\frac{\floor{7r/2}-3}5}\bigr\rceil and \sigma(G,3,r)=\floor{r/2}, and in general 3r2m3σ(G,m,r)(1+1/3)rm\frac{3r}{2m}-3\le \sigma(G,m,r)\le\frac{(1+1/\sqrt3)r}{m}.Comment: 34 pages, 2 figures. The most important changes in this revision are improvements of the results on hypercubes and random graphs. The proof of the previous hypercube result has been deleted, but the statement remains because it is stronger for m<52. In the random graph section we added a spy-strategy resul

    Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence

    Get PDF
    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed by Almheiri et. al in arXiv:1411.7041.Comment: 40 Pages + 25 Pages of Appendices. 38 figures. Typos and bibliographic amendments and minor correction
    corecore