25,421 research outputs found

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure

    Approximating the Maximum Overlap of Polygons under Translation

    Full text link
    Let PP and QQ be two simple polygons in the plane of total complexity nn, each of which can be decomposed into at most kk convex parts. We present an (1ε)(1-\varepsilon)-approximation algorithm, for finding the translation of QQ, which maximizes its area of overlap with PP. Our algorithm runs in O(cn)O(c n) time, where cc is a constant that depends only on kk and ε\varepsilon. This suggest that for polygons that are "close" to being convex, the problem can be solved (approximately), in near linear time

    Convex lattice polygons of fixed area with perimeter dependent weights

    Get PDF
    We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight t^m to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s^{-theta_{conv}} exp[K s^(1/2)] for large s and t less than a critical threshold t_c, where K is a t-dependent constant, and theta_{conv} is a critical exponent which does not change with t. We find theta_{conv} is 1/4 for the square lattice, but -1/4 for the hexagonal lattice. The reason for this unexpected non-universality of theta_{conv} is traced to existence of sharp corners in the asymptotic shape of these polygons.Comment: 8 pages, 5 figures, revtex

    The cross covariogram of a pair of polygons determines both polygons, with a few exceptions

    Full text link
    The cross covariogram g_{K,L} of two convex sets K and L in R^n is the function which associates to each x in R^n the volume of the intersection of K and L+x. Very recently Averkov and Bianchi [AB] have confirmed Matheron's conjecture on the covariogram problem, that asserts that any planar convex body K is determined by the knowledge of g_{K,K}. The problem of determining the sets from their covariogram is relevant in probability, in statistical shape recognition and in the determination of the atomic structure of a quasicrystal from X-ray diffraction images. We prove that when K and L are convex polygons (and also when K and L are planar convex cones) g_{K,L} determines both K and L, up to a described family of exceptions. These results imply that, when K and L are in these classes, the information provided by the cross covariogram is so rich as to determine not only one unknown body, as required by Matheron's conjecture, but two bodies, with a few classified exceptions. These results are also used by Bianchi [Bia] to prove that any convex polytope P in R^3 is determined by g_{P,P}.Comment: 26 pages, 9 figure

    Multi-triangulations as complexes of star polygons

    Full text link
    Maximal (k+1)(k+1)-crossing-free graphs on a planar point set in convex position, that is, kk-triangulations, have received attention in recent literature, with motivation coming from several interpretations of them. We introduce a new way of looking at kk-triangulations, namely as complexes of star polygons. With this tool we give new, direct, proofs of the fundamental properties of kk-triangulations, as well as some new results. This interpretation also opens-up new avenues of research, that we briefly explore in the last section.Comment: 40 pages, 24 figures; added references, update Section

    Central limit theorems for random polygons in an arbitrary convex set

    Full text link
    We study the probability distribution of the area and the number of vertices of random polygons in a convex set KR2K\subset\mathbb{R}^2. The novel aspect of our approach is that it yields uniform estimates for all convex sets KR2K\subset\mathbb{R}^2 without imposing any regularity conditions on the boundary K\partial K. Our main result is a central limit theorem for both the area and the number of vertices, settling a well-known conjecture in the field. We also obtain asymptotic results relating the growth of the expectation and variance of these two functionals.Comment: Published in at http://dx.doi.org/10.1214/10-AOP568 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore