1,699 research outputs found

    Which finitely generated Abelian groups admit isomorphic Cayley graphs?

    Full text link
    We show that Cayley graphs of finitely generated Abelian groups are rather rigid. As a consequence we obtain that two finitely generated Abelian groups admit isomorphic Cayley graphs if and only if they have the same rank and their torsion parts have the same cardinality. The proof uses only elementary arguments and is formulated in a geometric language.Comment: 16 pages; v2: added reference, reformulated quasi-convexity, v3: small corrections; to appear in Geometriae Dedicat

    On Groupoids and Hypergraphs

    Full text link
    We present a novel construction of finite groupoids whose Cayley graphs have large girth even w.r.t. a discounted distance measure that contracts arbitrarily long sequences of edges from the same colour class (sub-groupoid), and only counts transitions between colour classes (cosets). These groupoids are employed towards a generic construction method for finite hypergraphs that realise specified overlap patterns and avoid small cyclic configurations. The constructions are based on reduced products with groupoids generated by the elementary local extension steps, and can be made to preserve the symmetries of the given overlap pattern. In particular, we obtain highly symmetric, finite hypergraph coverings without short cycles. The groupoids and their application in reduced products are sufficiently generic to be applicable to other constructions that are specified in terms of local glueing operations and require global finite closure.Comment: Explicit completion of H in HxI (Section 2) is unstable (incompatible with restrictions), hence does not support inductive construction towards Prop. 2.17 based on Lem 2.16 as claimed. For corresponding technical result, now see arxiv:1806.08664; for discussion of main applications first announced here, now see arxiv:1709.0003

    The vertex-transitive TLF-planar graphs

    Full text link
    We consider the class of the topologically locally finite (in short TLF) planar vertex-transitive graphs, a class containing in particular all the one-ended planar Cayley graphs and the normal transitive tilings. We characterize these graphs with a finite local representation and a special kind of finite state automaton named labeling scheme. As a result, we are able to enumerate and describe all TLF-planar vertex-transitive graphs of any given degree. Also, we are able decide to whether any TLF-planar transitive graph is Cayley or not.Comment: Article : 23 pages, 15 figures Appendix : 13 pages, 72 figures Submitted to Discrete Mathematics The appendix is accessible at http://www.labri.fr/~renault/research/research.htm
    • …
    corecore