67 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Hierarchical Radio Resource Optimization for Heterogeneous Networks with Enhanced Inter-cell Interference Coordination (eICIC)

    Full text link
    Interference is a major performance bottleneck in Heterogeneous Network (HetNet) due to its multi-tier topological structure. We propose almost blank resource block (ABRB) for interference control in HetNet. When an ABRB is scheduled in a macro BS, a resource block (RB) with blank payload is transmitted and this eliminates the interference from this macro BS to the pico BSs. We study a two timescale hierarchical radio resource management (RRM) scheme for HetNet with dynamic ABRB control. The long term controls, such as dynamic ABRB, are adaptive to the large scale fading at a RRM server for co-Tier and cross-Tier interference control. The short term control (user scheduling) is adaptive to the local channel state information within each BS to exploit the multi-user diversity. The two timescale optimization problem is challenging due to the exponentially large solution space. We exploit the sparsity in the interference graph of the HetNet topology and derive structural properties for the optimal ABRB control. Based on that, we propose a two timescale alternative optimization solution for the user scheduling and ABRB control. The solution has low complexity and is asymptotically optimal at high SNR. Simulations show that the proposed solution has significant gain over various baselines.Comment: 14 pages, 8 figure

    Dynamic Almost Blank Subframe Scheme for Enhanced Intercell Interference Coordination in LTE-A Heterogeneous Networks

    Full text link
    In LTE-A heterogeneous network, traffic load may be distributed unequally because the transmission power of macro eNodeB (eNB) is higher than pico eNB. To address the coverage problems resulting from nodes with different transmission powers, cell range expansion (CRE) technique has been proposed as a cell selection technique. However, in this case, the intercell interference (ICI) problem can occur on both data and control channels when users connect to pico eNB. To mitigate ICI problem, a new dynamic almost blank subframe (ABS) scheme is proposed in this paper. In this scheme, a fuzzy logic system is deployed to monitor the system performance and then obtain the required number of ABSs. Simulation results show that the cell throughput and user throughput can be improved using the proposed dynamic ABS scheme

    PSUN: An OFDM-Pulsed Radar Coexistence Technique with Application to 3.5 GHz LTE

    Get PDF

    A dynamic almost blank subframe scheme for video streaming traffic model in heterogeneous networks

    Full text link
    © 2015 IEEE. In heterogeneous network (HetNet), the coverage area of picocell is small due to transmission power difference between macro eNodeB (eNB) and pico eNB. As a result, the traffic load is distributed unequally which yields to macrocell overloading. In order to overcome this issue, cell range expansion (CRE) technique has been proposed. However, the CRE approach can affect the downlink signal quality of the offloaded users and then these users experience high downlink interference from macro eNB on their control and data channels. Therefore, such inter-cell interference coordination (ICIC) techniques are needed to realize the promised capacity and coverage. Enhanced ICIC (eICIC) is a time domain technique to mitigate interference in HetNets using almost blank subframes (ABSs). However, the static ABS value cannot support the dynamic changing of network conditions. In this paper, a dynamic ABS scheme is proposed based on Genetic Algorithm to find the best ABS value and ABS locations in a frame to mitigate interference problem between macrocell and picocells for video streaming traffic model. Exhaustive simulation results show that the proposed scheme can improve the system performance in terms of throughput, outage probability and delay

    Performance Analysis of Scheduling Schemes for Femto to Macro Interference Coordination in LTE-Femtocell Deployment Scenario

    Get PDF
    Deploying femtocells that have low power level in LTE with small coverage area is an alternative solution for mobile operators to improve indoors network coverage area as well as system capacity. However deploying femtocells (HeNB) that were used co-channel frequency, can be brought about interference problem to the Macro BTS (eNB). Close Subscriber Group (CSG) of HeNB allows only User equipment (UE) to access HeNB. HeNB is the source of interference for UE who cannot access it. Therefore it is necessary for interference coordination methods among the HeNB and eNB. The methods are ICIC (Intercell Interference Coordination) and eICIC (enhanced Intercell Interference Coordination).  This paper proposed performance analysis of scheduling schemes for Femto to macro interference coordination that allocated resource in the frequency and time domain using LTE-Femtocell suburban and urban deployment scenario. Simulation result using ICIC methods can improve SINR performance 15.77 % in urban and 28.66 % in suburban, throughput performance 10.11 % in urban and 21.05 % in suburban. eICIC methods can improve SINR performance 17.44 % in urban and 31.14 % in suburban, throughput performance 19.83% in urban and 44.39 % in suburban.The result prove using eICIC method in time domain resource have better performance than using ICIC method in frequency resource. However using eICIC method in suburban deployment scenariocan increase the performance of SINR and throughput more effective than using eICIC method in urban deployment scenario
    • …
    corecore