758 research outputs found

    Centralized and Cooperative Transmission of Secure Multiple Unicasts using Network Coding

    Full text link
    We introduce a method for securely delivering a set of messages to a group of clients over a broadcast erasure channel where each client is interested in a distinct message. Each client is able to obtain its own message but not the others'. In the proposed method the messages are combined together using a special variant of random linear network coding. Each client is provided with a private set of decoding coefficients to decode its own message. Our method provides security for the transmission sessions against computational brute-force attacks and also weakly security in information theoretic sense. As the broadcast channel is assumed to be erroneous, the missing coded packets should be recovered in some way. We consider two different scenarios. In the first scenario the missing packets are retransmitted by the base station (centralized). In the second scenario the clients cooperate with each other by exchanging packets (decentralized). In both scenarios, network coding techniques are exploited to increase the total throughput. For the case of centralized retransmissions we provide an analytical approximation for the throughput performance of instantly decodable network coded (IDNC) retransmissions as well as numerical experiments. For the decentralized scenario, we propose a new IDNC based retransmission method where its performance is evaluated via simulations and analytical approximation. Application of this method is not limited to our special problem and can be generalized to a new class of problems introduced in this paper as the cooperative index coding problem

    TCP in 5G mmWave Networks: Link Level Retransmissions and MP-TCP

    Full text link
    MmWave communications, one of the cornerstones of future 5G mobile networks, are characterized at the same time by a potential multi-gigabit capacity and by a very dynamic channel, sensitive to blockage, wide fluctuations in the received signal quality, and possibly also sudden link disruption. While the performance of physical and MAC layer schemes that address these issues has been thoroughly investigated in the literature, the complex interactions between mmWave links and transport layer protocols such as TCP are still relatively unexplored. This paper uses the ns-3 mmWave module, with its channel model based on real measurements in New York City, to analyze the performance of the Linux TCP/IP stack (i) with and without link-layer retransmissions, showing that they are fundamental to reach a high TCP throughput on mmWave links and (ii) with Multipath TCP (MP-TCP) over multiple LTE and mmWave links, illustrating which are the throughput-optimal combinations of secondary paths and congestion control algorithms in different conditions.Comment: 6 pages, 11 figures, accepted for presentation at the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS

    JTP: An Energy-conscious Transport Protocol for Wireless Ad Hoc Networks

    Full text link
    Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.Defense Advanced Research Projects Agency (AFRL FA8750-06-C-0199

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    Full text link
    We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.Defense Advanced Research Projects Agency (NBCHC050053

    Timed Analysis of Security Protocols

    Get PDF
    We propose a method for engineering security protocols that are aware of timing aspects. We study a simplified version of the well-known Needham Schroeder protocol and the complete Yahalom protocol, where timing information allows the study of different attack scenarios. We model check the protocols using UPPAAL. Further, a taxonomy is obtained by studying and categorising protocols from the well known Clark Jacob library and the Security Protocol Open Repository (SPORE) library. Finally, we present some new challenges and threats that arise when considering time in the analysis, by providing a novel protocol that uses time challenges and exposing a timing attack over an implementation of an existing security protocol
    • …
    corecore