3 research outputs found

    On Index Coding and Graph Homomorphism

    Full text link
    In this work, we study the problem of index coding from graph homomorphism perspective. We show that the minimum broadcast rate of an index coding problem for different variations of the problem such as non-linear, scalar, and vector index code, can be upper bounded by the minimum broadcast rate of another index coding problem when there exists a homomorphism from the complement of the side information graph of the first problem to that of the second problem. As a result, we show that several upper bounds on scalar and vector index code problem are special cases of one of our main theorems. For the linear scalar index coding problem, it has been shown in [1] that the binary linear index of a graph is equal to a graph theoretical parameter called minrank of the graph. For undirected graphs, in [2] it is shown that minrank(G)=k\mathrm{minrank}(G) = k if and only if there exists a homomorphism from Gˉ\bar{G} to a predefined graph Gˉk\bar{G}_k. Combining these two results, it follows that for undirected graphs, all the digraphs with linear index of at most k coincide with the graphs GG for which there exists a homomorphism from Gˉ\bar{G} to Gˉk\bar{G}_k. In this paper, we give a direct proof to this result that works for digraphs as well. We show how to use this classification result to generate lower bounds on scalar and vector index. In particular, we provide a lower bound for the scalar index of a digraph in terms of the chromatic number of its complement. Using our framework, we show that by changing the field size, linear index of a digraph can be at most increased by a factor that is independent from the number of the nodes.Comment: 5 pages, to appear in "IEEE Information Theory Workshop", 201

    The Single-Uniprior Index-Coding Problem: The Single-Sender Case and The Multi-Sender Extension

    Full text link
    Index coding studies multiterminal source-coding problems where a set of receivers are required to decode multiple (possibly different) messages from a common broadcast, and they each know some messages a priori. In this paper, at the receiver end, we consider a special setting where each receiver knows only one message a priori, and each message is known to only one receiver. At the broadcasting end, we consider a generalized setting where there could be multiple senders, and each sender knows a subset of the messages. The senders collaborate to transmit an index code. This work looks at minimizing the number of total coded bits the senders are required to transmit. When there is only one sender, we propose a pruning algorithm to find a lower bound on the optimal (i.e., the shortest) index codelength, and show that it is achievable by linear index codes. When there are two or more senders, we propose an appending technique to be used in conjunction with the pruning technique to give a lower bound on the optimal index codelength; we also derive an upper bound based on cyclic codes. While the two bounds do not match in general, for the special case where no two distinct senders know any message in common, the bounds match, giving the optimal index codelength. The results are expressed in terms of strongly connected components in directed graphs that represent the index-coding problems.Comment: Author final manuscrip
    corecore