7 research outputs found

    Locally ss-distance transitive graphs

    Full text link
    We give a unified approach to analysing, for each positive integer ss, a class of finite connected graphs that contains all the distance transitive graphs as well as the locally ss-arc transitive graphs of diameter at least ss. A graph is in the class if it is connected and if, for each vertex vv, the subgroup of automorphisms fixing vv acts transitively on the set of vertices at distance ii from vv, for each ii from 1 to ss. We prove that this class is closed under forming normal quotients. Several graphs in the class are designated as degenerate, and a nondegenerate graph in the class is called basic if all its nontrivial normal quotients are degenerate. We prove that, for s≥2s\geq 2, a nondegenerate, nonbasic graph in the class is either a complete multipartite graph, or a normal cover of a basic graph. We prove further that, apart from the complete bipartite graphs, each basic graph admits a faithful quasiprimitive action on each of its (1 or 2) vertex orbits, or a biquasiprimitive action. These results invite detailed additional analysis of the basic graphs using the theory of quasiprimitive permutation groups.Comment: Revised after referee report

    Pairwise transitive 2-designs

    Full text link
    We classify the pairwise transitive 2-designs, that is, 2-designs such that a group of automorphisms is transitive on the following five sets of ordered pairs: point-pairs, incident point-block pairs, non-incident point-block pairs, intersecting block-pairs and non-intersecting block-pairs. These 2-designs fall into two classes: the symmetric ones and the quasisymmetric ones. The symmetric examples include the symmetric designs from projective geometry, the 11-point biplane, the Higman-Sims design, and designs of points and quadratic forms on symplectic spaces. The quasisymmetric examples arise from affine geometry and the point-line geometry of projective spaces, as well as several sporadic examples.Comment: 28 pages, updated after review proces

    Classification of a family of completely transitive codes

    Full text link
    The completely regular codes in Hamming graphs have a high degree of combinatorial symmetry and have attracted a lot of interest since their introduction in 1973 by Delsarte. This paper studies the subfamily of completely transitive codes, those in which an automorphism group is transitive on each part of the distance partition. This family is a natural generalisation of the binary completely transitive codes introduced by Sole in 1990. We take the first step towards a classification of these codes, determining those for which the automorphism group is faithful on entries.Comment: 16 page
    corecore