522 research outputs found

    Low-Complexity LP Decoding of Nonbinary Linear Codes

    Full text link
    Linear Programming (LP) decoding of Low-Density Parity-Check (LDPC) codes has attracted much attention in the research community in the past few years. LP decoding has been derived for binary and nonbinary linear codes. However, the most important problem with LP decoding for both binary and nonbinary linear codes is that the complexity of standard LP solvers such as the simplex algorithm remains prohibitively large for codes of moderate to large block length. To address this problem, two low-complexity LP (LCLP) decoding algorithms for binary linear codes have been proposed by Vontobel and Koetter, henceforth called the basic LCLP decoding algorithm and the subgradient LCLP decoding algorithm. In this paper, we generalize these LCLP decoding algorithms to nonbinary linear codes. The computational complexity per iteration of the proposed nonbinary LCLP decoding algorithms scales linearly with the block length of the code. A modified BCJR algorithm for efficient check-node calculations in the nonbinary basic LCLP decoding algorithm is also proposed, which has complexity linear in the check node degree. Several simulation results are presented for nonbinary LDPC codes defined over Z_4, GF(4), and GF(8) using quaternary phase-shift keying and 8-phase-shift keying, respectively, over the AWGN channel. It is shown that for some group-structured LDPC codes, the error-correcting performance of the nonbinary LCLP decoding algorithms is similar to or better than that of the min-sum decoding algorithm.Comment: To appear in IEEE Transactions on Communications, 201

    Decoding Across the Quantum LDPC Code Landscape

    Full text link
    We show that belief propagation combined with ordered statistics post-processing is a general decoder for quantum low density parity check codes constructed from the hypergraph product. To this end, we run numerical simulations of the decoder applied to three families of hypergraph product code: topological codes, fixed-rate random codes and a new class of codes that we call semi-topological codes. Our new code families share properties of both topological and random hypergraph product codes, with a construction that allows for a finely-controlled trade-off between code threshold and stabilizer locality. Our results indicate thresholds across all three families of hypergraph product code, and provide evidence of exponential suppression in the low error regime. For the Toric code, we observe a threshold in the range 9.9±0.2%9.9\pm0.2\%. This result improves upon previous quantum decoders based on belief propagation, and approaches the performance of the minimum weight perfect matching algorithm. We expect semi-topological codes to have the same threshold as Toric codes, as they are identical in the bulk, and we present numerical evidence supporting this observation.Comment: The code for the BP+OSD decoder used in this work can be found on Github: https://github.com/quantumgizmos/bp_os

    VLSI Implementation of a Rate Decoder for Structural LDPC Channel Codes

    Get PDF
    AbstractThis paper proposes a low complexity low-density parity check decoder (LDPC) design. The design mainly accomplishes a message passing algorithm and systolic high throughput architecture. The typical mathematical calculations are based on the observation that nodes with high log likelihood ratio provide almost same information in every iteration and can be considered as stationary, we propose an algorithm in which the parity check matrix H is updated to a reduced complexity form every time a stationary node is encountered which results in lesser number of numerical computations in subsequent iterations. In this paper, we contemplately focuses on computational complexity and the decoder design significantly benefits from the high throughput point of view and the various improvisations introduced at various levels of abstraction in the decoder design. Threshold Controlled Min Sum Algorithm implements the LDPC decoder design for a code compliant with wired and wireless applications. A high performance LDPC decoder has been designed that achieves a throughput of 0.890 Gbps. The whole design of LDPC Decoder is designed, simulated and synthesized using Xilinx ISE 13.1 EDA Tool
    • …
    corecore