943 research outputs found

    Bit-Interleaved Coded Energy-Based Modulation with Iterative Decoding

    Full text link
    This paper develops a low-complexity near-optimal non-coherent receiver for a multi-level energy-based coded modulation system. Inspired by the turbo processing principle, we incorporate the fundamentals of bit-interleaved coded modulation with iterative decoding (BICM-ID) into the proposed receiver design. The resulting system is called bit-interleaved coded energy-based modulation with iterative decoding (BICEM-ID) and its error performance is analytically studied. Specifically, we derive upper bounds on the average pairwise error probability (PEP) of the non-coherent BICEM-ID system in the feedback-free (FF) and error-free feedback (EFF) scenarios. It is revealed that the definition of the nearest neighbors, which is important in the performance analysis in the FF scenario, is very different from that in the coherent BICM-ID counterpart. The analysis also reveals how the mapping from coded bits to energy levels influences the diversity order and coding gain of the BICEM-ID systems. A design criterion for good mappings is then formulated and an algorithm is proposed to find a set of best mappings for BICEM-ID. Finally, simulation results corroborate the main analytical findings

    Turbo trellis-coded hierarchical modulation assisted decode-and-forward cooperation

    No full text
    Hierarchical modulation, which is also known as layered modulation, has been widely adopted across the telecommunication industry. Its strict backward compatibility with single-layer modems and its low complexity facilitate the seamless upgrading of wireless communication services. The potential employment of hierarchical modulation in cooperative communications has the promise of increasing the achievable throughput at a low power consumption. In this paper, we propose a single-relay aided hierarchical modulation based cooperative communication system. The source employs a pair of Turbo Trellis-Coded Modulation schemes relying on specially designed hierarchical modulation, while the relay invokes the Decode-and-Forward protocol. We have analysed the system’s achievable rate as well as its bit error ratio using Monte-Carlo simulations. The results demonstrate that the power consumption of the entire system is reduced to 3.62 dB per time slot by our scheme

    Principles of Mobile Communication

    Full text link

    Cooperative Distributed Transmission and Reception

    Get PDF
    In telecommunications, a cooperative scheme refers to a method where two or more users share or combine their information in order to increase diversity gain or power gain. In contrast to conventional point-to-point communications, cooperative communications allow different users in a wireless network to share resources so that instead of maximizing the performance of its own link, each user collaborates with its neighbours to achieve an overall improvement in performance. In this dissertation, we consider different models for transmission and reception and explore cooperative techniques that increase the reliability and capacity gains in wireless networks, with consideration to practical issues such as channel estimation errors and backhaul constraints. This dissertation considers the design and performance of cooperative communication techniques. Particularly, the first part of this dissertation focuses on the performance comparison between interference alignment and opportunistic transmission for a 3-user single-input single- output (SISO) interference channel in terms of average sum rate in the presence of channel estimation errors. In the case of interference alignment, channel estimation errors cause interference leakage which consequently results in a loss of achievable rate. In the case of opportunistic transmission, channel estimation errors result in a non-zero probability of incorrectly choosing the node with the best channel. The effect of these impairments is quantified in terms of the achievable average sum rate of these transmission techniques. Analysis and numerical examples show that SISO interference alignment can achieve better average sum rate with good channel estimates and at high SNR whereas opportunistic transmission provides better performance at low SNR and/or when the channel estimates are poor. We next considers the problem of jointly decoding binary phase shift keyed (BPSK) messages from a single distant transmitter to a cooperative receive cluster connected by a local area network (LAN). An approximate distributed receive beamforming algorithm is proposed based on the exchange of coarsely- quantized observations among some or all of the nodes in the receive cluster. By taking into account the differences in channel quality across the receive cluster, the quantized information from other nodes in the receive cluster can be appropriately combined with locally unquantized information to form an approximation of the ideal receive beamformer decision statistic. The LAN throughput requirements of this technique are derived as a function of the number of participating nodes in the receive cluster, the forward link code rate, and the quantization parameters. Using information-theoretic analysis and simulations of an LDPC coded system in fading channels, numerical results show that the performance penalty (in terms of outage probability and block error rate) due to coarse quantization is small in the low SNR regimes enabled by cooperative distributed reception. An upper/lower bound approximation is derived based on a circle approximation in the channel magnitude domain which provides a pretty fast way to compute the outage probability performance for a system with arbitrary number of receivers at a given SNR. In the final part of this dissertation, we discuss the distributed reception technique with higher- order modulation schemes in the forward link. The extension from BPSK to QPSK is straightforward and is studied in the second part of this dissertation. The extension to 8PSK, 4PAM and 16QAM forward links, however, is not trivial. For 8PSK, two techniques are proposed: pseudobeamforming and 3-bit belief combining where the first one is intuitive and turns out to be suboptimal,the latter is optimal in terms of outage probability performance. The idea of belief combining can be applied to the 4PAM and 16QAM and it is shown that better/finer quantizer design can further improve the block error rate performance. Information-theoretic analysis and numerical results are provided to show that significant reliability and SNR gains can be achieved by using the proposed schemes

    Iterative decoding combined with physical-layer network coding on impulsive noise channels

    Get PDF
    PhD ThesisThis thesis investigates the performance of a two-way wireless relay channel (TWRC) employing physical layer network coding (PNC) combined with binary and non-binary error-correcting codes on additive impulsive noise channels. This is a research topic that has received little attention in the research community, but promises to offer very interesting results as well as improved performance over other schemes. The binary channel coding schemes include convolutional codes, turbo codes and trellis bitinterleaved coded modulation with iterative decoding (BICM-ID). Convolutional codes and turbo codes defined in finite fields are also covered due to non-binary channel coding schemes, which is a sparse research area. The impulsive noise channel is based on the well-known Gaussian Mixture Model, which has a mixture constant denoted by α. The performance of PNC combined with the different coding schemes are evaluated with simulation results and verified through the derivation of union bounds for the theoretical bit-error rate (BER). The analyses of the binary iterative codes are presented in the form of extrinsic information transfer (ExIT) charts, which show the behaviour of the iterative decoding algorithms at the relay of a TWRC employing PNC and also the signal-to-noise ratios (SNRs) when the performance converges. It is observed that the non-binary coding schemes outperform the binary coding schemes at low SNRs and then converge at higher SNRs. The coding gain at low SNRs become more significant as the level of impulsiveness increases. It is also observed that the error floor due to the impulsive noise is consistently lower for non-binary codes. There is still great scope for further research into non-binary codes and PNC on different channels, but the results in this thesis have shown that these codes can achieve significant coding gains over binary codes for wireless networks employing PNC, particularly when the channels are harsh
    corecore