815 research outputs found

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P\mathcal{P}' such that (1) P\mathcal{P}' contains P\mathcal{P}, (2) P\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    (2+1) gravity for higher genus in the polygon model

    Full text link
    We construct explicitly a (12g-12)-dimensional space P of unconstrained and independent initial data for 't Hooft's polygon model of (2+1) gravity for vacuum spacetimes with compact genus-g spacelike slices, for any g >= 2. Our method relies on interpreting the boost parameters of the gluing data between flat Minkowskian patches as the lengths of certain geodesic curves of an associated smooth Riemann surface of the same genus. The appearance of an initial big-bang or a final big-crunch singularity (but never both) is verified for all configurations. Points in P correspond to spacetimes which admit a one-polygon tessellation, and we conjecture that P is already the complete physical phase space of the polygon model. Our results open the way for numerical investigations of pure (2+1) gravity.Comment: 35 pages, 22 figure

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure

    Statistical hyperbolicity in groups

    Full text link
    In this paper, we introduce a geometric statistic called the "sprawl" of a group with respect to a generating set, based on the average distance in the word metric between pairs of words of equal length. The sprawl quantifies a certain obstruction to hyperbolicity. Group presentations with maximum sprawl (i.e., without this obstruction) are called statistically hyperbolic. We first relate sprawl to curvature and show that nonelementary hyperbolic groups are statistically hyperbolic, then give some results for products, for Diestel-Leader graphs and lamplighter groups. In free abelian groups, the word metrics asymptotically approach norms induced by convex polytopes, causing the study of sprawl to reduce to a problem in convex geometry. We present an algorithm that computes sprawl exactly for any generating set, thus quantifying the failure of various presentations of Z^d to be hyperbolic. This leads to a conjecture about the extreme values, with a connection to the classic Mahler conjecture.Comment: 14 pages, 5 figures. This is split off from the paper "The geometry of spheres in free abelian groups.

    Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

    Full text link
    We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For points in convex position we obtain a new realization of the associahedron, i.e., a geometric representation of the set of triangulations of an n-gon, or of the set of binary trees on n vertices, or of many other combinatorial objects that are counted by the Catalan numbers. By considering the 1-dimensional version of the polytope of constrained expansive motions we obtain a second distinct realization of the associahedron as a perturbation of the positive cell in a Coxeter arrangement. Our methods produce as a by-product a new proof that every simple polygon or polygonal arc in the plane has expansive motions, a key step in the proofs of the Carpenter's Rule Theorem by Connelly, Demaine and Rote (2000) and by Streinu (2000).Comment: 40 pages, 7 figures. Changes from v1: added some comments (specially to the "Further remarks" in Section 5) + changed to final book format. This version is to appear in "Discrete and Computational Geometry -- The Goodman-Pollack Festschrift" (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), series "Algorithms and Combinatorics", Springer Verlag, Berli
    corecore