12,207 research outputs found

    Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-arithmetic means

    Full text link
    Bayesian classification labels observations based on given prior information, namely class-a priori and class-conditional probabilities. Bayes' risk is the minimum expected classification cost that is achieved by the Bayes' test, the optimal decision rule. When no cost incurs for correct classification and unit cost is charged for misclassification, Bayes' test reduces to the maximum a posteriori decision rule, and Bayes risk simplifies to Bayes' error, the probability of error. Since calculating this probability of error is often intractable, several techniques have been devised to bound it with closed-form formula, introducing thereby measures of similarity and divergence between distributions like the Bhattacharyya coefficient and its associated Bhattacharyya distance. The Bhattacharyya upper bound can further be tightened using the Chernoff information that relies on the notion of best error exponent. In this paper, we first express Bayes' risk using the total variation distance on scaled distributions. We then elucidate and extend the Bhattacharyya and the Chernoff upper bound mechanisms using generalized weighted means. We provide as a byproduct novel notions of statistical divergences and affinity coefficients. We illustrate our technique by deriving new upper bounds for the univariate Cauchy and the multivariate tt-distributions, and show experimentally that those bounds are not too distant to the computationally intractable Bayes' error.Comment: 22 pages, include R code. To appear in Pattern Recognition Letter

    The effect of noise correlations on randomized benchmarking

    Get PDF
    Among the most popular and well studied quantum characterization, verification and validation techniques is randomized benchmarking (RB), an important statistical tool used to characterize the performance of physical logic operations useful in quantum information processing. In this work we provide a detailed mathematical treatment of the effect of temporal noise correlations on the outcomes of RB protocols. We provide a fully analytic framework capturing the accumulation of error in RB expressed in terms of a three-dimensional random walk in "Pauli space." Using this framework we derive the probability density function describing RB outcomes (averaged over noise) for both Markovian and correlated errors, which we show is generally described by a gamma distribution with shape and scale parameters depending on the correlation structure. Long temporal correlations impart large nonvanishing variance and skew in the distribution towards high-fidelity outcomes -- consistent with existing experimental data -- highlighting potential finite-sampling pitfalls and the divergence of the mean RB outcome from worst-case errors in the presence of noise correlations. We use the Filter-transfer function formalism to reveal the underlying reason for these differences in terms of effective coherent averaging of correlated errors in certain random sequences. We conclude by commenting on the impact of these calculations on the utility of single-metric approaches to quantum characterization, verification, and validation.Comment: Updated and expanded to include full derivation. Related papers available from http://www.physics.usyd.edu.au/~mbiercuk/Publications.htm

    Heegaard Floer homology and integer surgeries on links

    Full text link
    Let L be a link in an integral homology three-sphere. We give a description of the Heegaard Floer homology of integral surgeries on L in terms of some data associated to L, which we call a complete system of hyperboxes for L. Roughly, a complete systems of hyperboxes consists of chain complexes for (some versions of) the link Floer homology of L and all its sublinks, together with several chain maps between these complexes. Further, we introduce a way of presenting closed four-manifolds with b_2^+ > 1 by four-colored framed links in the three-sphere. Given a link presentation of this kind for a four-manifold X, we then describe the Ozsvath-Szabo mixed invariants of X in terms of a complete system of hyperboxes for the link. Finally, we explain how a grid diagram produces a particular complete system of hyperboxes for the corresponding link.Comment: 231 pages, 54 figures; major revision: we now work with one U variable for each w basepoint, rather than one per link component; we also added Section 4, with an overview of the main resul
    • …
    corecore