8,705 research outputs found

    Graph Sample and Hold: A Framework for Big-Graph Analytics

    Full text link
    Sampling is a standard approach in big-graph analytics; the goal is to efficiently estimate the graph properties by consulting a sample of the whole population. A perfect sample is assumed to mirror every property of the whole population. Unfortunately, such a perfect sample is hard to collect in complex populations such as graphs (e.g. web graphs, social networks etc), where an underlying network connects the units of the population. Therefore, a good sample will be representative in the sense that graph properties of interest can be estimated with a known degree of accuracy. While previous work focused particularly on sampling schemes used to estimate certain graph properties (e.g. triangle count), much less is known for the case when we need to estimate various graph properties with the same sampling scheme. In this paper, we propose a generic stream sampling framework for big-graph analytics, called Graph Sample and Hold (gSH). To begin, the proposed framework samples from massive graphs sequentially in a single pass, one edge at a time, while maintaining a small state. We then show how to produce unbiased estimators for various graph properties from the sample. Given that the graph analysis algorithms will run on a sample instead of the whole population, the runtime complexity of these algorithm is kept under control. Moreover, given that the estimators of graph properties are unbiased, the approximation error is kept under control. Finally, we show the performance of the proposed framework (gSH) on various types of graphs, such as social graphs, among others

    Graph Variogram: A novel tool to measure spatial stationarity

    Full text link
    Irregularly sampling a spatially stationary random field does not yield a graph stationary signal in general. Based on this observation, we build a definition of graph stationarity based on intrinsic stationarity, a less restrictive definition of classical stationarity. We introduce the concept of graph variogram, a novel tool for measuring spatial intrinsic stationarity at local and global scales for irregularly sampled signals by selecting subgraphs of local neighborhoods. Graph variograms are extensions of variograms used for signals defined on continuous Euclidean space. Our experiments with intrinsically stationary signals sampled on a graph, demonstrate that graph variograms yield estimates with small bias of true theoretical models, while being robust to sampling variation of the space.Comment: Submitted to IEEE Global Conference on Signal and Information Processing 2018 (IEEE GlobalSIP 2018), Nov 2018, Anaheim, CA, United States. (https://2018.ieeeglobalsip.org/
    • …
    corecore