5,569 research outputs found

    On Fast Implementation of Harmonic MUSIC for Known and Unknown Model Orders

    Get PDF
    This paper presents a fast implementation of the MUltiple SIgnal Classification (MUSIC) estimation criterion for fundamental frequency estimation of harmonic signals with known or unknown model orders. First, we reformulate the MUSIC estimator such that the MUSIC estimate can be computed directly from the signal subspace or just an a-bitrary basis thereof. We also discuss the selection of a sub-space tracker based on the known or unknown rank of the signal and noise subspaces. Second, we introduce an implementation of the MUSIC estimator that only involves one FFT for known model orders, and we extend it to the case of unknown model orders. The performance gain in terms of computation times obtained by the efficient implementation is significant which is demonstrated through simulations

    Robust Bayesian Pitch Tracking Based on the Harmonic Model

    Get PDF
    Fundamental frequency is one of the most important characteristics of speech and audio signals. Harmonic model-based fundamental frequency estimators offer a higher estimation accuracy and robustness against noise than the widely used autocorrelation-based methods. However, the traditional harmonic model-based estimators do not take the temporal smoothness of the fundamental frequency, the model order, and the voicing into account as they process each data segment independently. In this paper, a fully Bayesian fundamental frequency tracking algorithm based on the harmonic model and a first-order Markov process model is proposed. Smoothness priors are imposed on the fundamental frequencies, model orders, and voicing using first-order Markov process models. Using these Markov models, fundamental frequency estimation and voicing detection errors can be reduced. Using the harmonic model, the proposed fundamental frequency tracker has an improved robustness to noise. An analytical form of the likelihood function, which can be computed efficiently, is derived. Compared to the state-of-the-art neural network and nonparametric approaches, the proposed fundamental frequency tracking algorithm has superior performance in almost all investigated scenarios, especially in noisy conditions. For example, under 0 dB white Gaussian noise, the proposed algorithm reduces the mean absolute errors and gross errors by 15% and 20% on the Keele pitch database and 36% and 26% on sustained /a/ sounds from a database of Parkinson's disease voices. A MATLAB version of the proposed algorithm is made freely available for reproduction of the results. 1 1An implementation of the proposed algorithm using MATLAB may be found in https://tinyurl.com/yxn4a543

    Joint High-Resolution Fundamental Frequency and Order Estimation

    Get PDF
    In this paper, we present a novel method for joint estimation of the fundamental frequency and order of a set of harmonically related sinusoids based on the MUltiple SIgnal Classification (MUSIC) estimation criterion. The presented method, termed HMUSIC, is shown to have an efficient implementation using fast Fourier transforms (FFTs). Furthermore, refined estimates can be obtained using a gradient-based method. Illustrative examples of the application of the algorithm to real-life speech and audio signals are given, and the statistical performance of the estimator is evaluated using synthetic signals, demonstrating its good statistical properties

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    Sparse Modeling of Grouped Line Spectra

    Get PDF
    This licentiate thesis focuses on clustered parametric models for estimation of line spectra, when the spectral content of a signal source is assumed to exhibit some form of grouping. Different from previous parametric approaches, which generally require explicit knowledge of the model orders, this thesis exploits sparse modeling, where the orders are implicitly chosen. For line spectra, the non-linear parametric model is approximated by a linear system, containing an overcomplete basis of candidate frequencies, called a dictionary, and a large set of linear response variables that selects and weights the components in the dictionary. Frequency estimates are obtained by solving a convex optimization program, where the sum of squared residuals is minimized. To discourage overfitting and to infer certain structure in the solution, different convex penalty functions are introduced into the optimization. The cost trade-off between fit and penalty is set by some user parameters, as to approximate the true number of spectral lines in the signal, which implies that the response variable will be sparse, i.e., have few non-zero elements. Thus, instead of explicit model orders, the orders are implicitly set by this trade-off. For grouped variables, the dictionary is customized, and appropriate convex penalties selected, so that the solution becomes group sparse, i.e., has few groups with non-zero variables. In an array of sensors, the specific time-delays and attenuations will depend on the source and sensor positions. By modeling this, one may estimate the location of a source. In this thesis, a novel joint location and grouped frequency estimator is proposed, which exploits sparse modeling for both spectral and spatial estimates, showing robustness against sources with overlapping frequency content. For audio signals, this thesis uses two different features for clustering. Pitch is a perceptual property of sound that may be described by the harmonic model, i.e., by a group of spectral lines at integer multiples of a fundamental frequency, which we estimate by exploiting a novel adaptive total variation penalty. The other feature, chroma, is a concept in musical theory, collecting pitches at powers of 2 from each other into groups. Using a chroma dictionary, together with appropriate group sparse penalties, we propose an automatic transcription of the chroma content of a signal

    Estimation of Fundamental Frequencies in Stereophonic Music Mixtures

    Get PDF
    • …
    corecore