7,772 research outputs found

    Multi-agent Systems with Compasses

    Full text link
    This paper investigates agreement protocols over cooperative and cooperative--antagonistic multi-agent networks with coupled continuous-time nonlinear dynamics. To guarantee convergence for such systems, it is common in the literature to assume that the vector field of each agent is pointing inside the convex hull formed by the states of the agent and its neighbors, given that the relative states between each agent and its neighbors are available. This convexity condition is relaxed in this paper, as we show that it is enough that the vector field belongs to a strict tangent cone based on a local supporting hyperrectangle. The new condition has the natural physical interpretation of requiring shared reference directions in addition to the available local relative states. Such shared reference directions can be further interpreted as if each agent holds a magnetic compass indicating the orientations of a global frame. It is proven that the cooperative multi-agent system achieves exponential state agreement if and only if the time-varying interaction graph is uniformly jointly quasi-strongly connected. Cooperative--antagonistic multi-agent systems are also considered. For these systems, the relation has a negative sign for arcs corresponding to antagonistic interactions. State agreement may not be achieved, but instead it is shown that all the agents' states asymptotically converge, and their limits agree componentwise in absolute values if and in general only if the time-varying interaction graph is uniformly jointly strongly connected.Comment: SIAM Journal on Control and Optimization, In pres

    Differential Inequalities in Multi-Agent Coordination and Opinion Dynamics Modeling

    Get PDF
    Distributed algorithms of multi-agent coordination have attracted substantial attention from the research community; the simplest and most thoroughly studied of them are consensus protocols in the form of differential or difference equations over general time-varying weighted graphs. These graphs are usually characterized algebraically by their associated Laplacian matrices. Network algorithms with similar algebraic graph theoretic structures, called being of Laplacian-type in this paper, also arise in other related multi-agent control problems, such as aggregation and containment control, target surrounding, distributed optimization and modeling of opinion evolution in social groups. In spite of their similarities, each of such algorithms has often been studied using separate mathematical techniques. In this paper, a novel approach is offered, allowing a unified and elegant way to examine many Laplacian-type algorithms for multi-agent coordination. This approach is based on the analysis of some differential or difference inequalities that have to be satisfied by the some "outputs" of the agents (e.g. the distances to the desired set in aggregation problems). Although such inequalities may have many unbounded solutions, under natural graphic connectivity conditions all their bounded solutions converge (and even reach consensus), entailing the convergence of the corresponding distributed algorithms. In the theory of differential equations the absence of bounded non-convergent solutions is referred to as the equation's dichotomy. In this paper, we establish the dichotomy criteria of Laplacian-type differential and difference inequalities and show that these criteria enable one to extend a number of recent results, concerned with Laplacian-type algorithms for multi-agent coordination and modeling opinion formation in social groups.Comment: accepted to Automatic

    Persistence based analysis of consensus protocols for dynamic graph networks

    Full text link
    This article deals with the consensus problem involving agents with time-varying singularities in the dynamics or communication in undirected graph networks. Existing results provide control laws which guarantee asymptotic consensus. These results are based on the analysis of a system switching between piecewise constant and time-invariant dynamics. This work introduces a new analysis technique relying upon classical notions of persistence of excitation to study the convergence properties of the time-varying multi-agent dynamics. Since the individual edge weights pass through singularities and vary with time, the closed-loop dynamics consists of a non-autonomous linear system. Instead of simplifying to a piecewise continuous switched system as in literature, smooth variations in edge weights are allowed, albeit assuming an underlying persistence condition which characterizes sufficient inter-agent communication to reach consensus. The consensus task is converted to edge-agreement in order to study a stabilization problem to which classical persistence based results apply. The new technique allows precise computation of the rate of convergence to the consensus value.Comment: This article contains 7 pages and includes 4 figures. it is accepted in 13th European Control Conferenc

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201
    • …
    corecore