7,861 research outputs found

    Wigner quasi-probability distribution for the infinite square well: energy eigenstates and time-dependent wave packets

    Full text link
    We calculate the Wigner quasi-probability distribution for position and momentum, P_W^(n)(x,p), for the energy eigenstates of the standard infinite well potential, using both x- and p-space stationary-state solutions, as well as visualizing the results. We then evaluate the time-dependent Wigner distribution, P_W(x,p;t), for Gaussian wave packet solutions of this system, illustrating both the short-term semi-classical time dependence, as well as longer-term revival and fractional revival behavior and the structure during the collapsed state. This tool provides an excellent way of demonstrating the patterns of highly correlated Schrodinger-cat-like `mini-packets' which appear at fractional multiples of the exact revival time.Comment: 45 pages, 16 embedded, low-resolution .eps figures (higher resolution, publication quality figures are available from the authors); submitted to American Journal of Physic

    On the Method of Interconnection and Damping Assignment Passivity-Based Control for the Stabilization of Mechanical Systems

    Full text link
    Interconnection and damping assignment passivity-based control (IDA-PBC) is an excellent method to stabilize mechanical systems in the Hamiltonian formalism. In this paper, several improvements are made on the IDA-PBC method. The skew-symmetric interconnection submatrix in the conventional form of IDA-PBC is shown to have some redundancy for systems with the number of degrees of freedom greater than two, containing unnecessary components that do not contribute to the dynamics. To completely remove this redundancy, the use of quadratic gyroscopic forces is proposed in place of the skew-symmetric interconnection submatrix. Reduction of the number of matching partial differential equations in IDA-PBC and simplification of the structure of the matching partial differential equations are achieved by eliminating the gyroscopic force from the matching partial differential equations. In addition, easily verifiable criteria are provided for Lyapunov/exponential stabilizability by IDA-PBC for all linear controlled Hamiltonian systems with arbitrary degrees of underactuation and for all nonlinear controlled Hamiltonian systems with one degree of underactuation. A general design procedure for IDA-PBC is given and illustrated with examples. The duality of the new IDA-PBC method to the method of controlled Lagrangians is discussed. This paper renders the IDA-PBC method as powerful as the controlled Lagrangian method

    The Quantum Mellin transform

    Get PDF
    We uncover a new type of unitary operation for quantum mechanics on the half-line which yields a transformation to ``Hyperbolic phase space''. We show that this new unitary change of basis from the position x on the half line to the Hyperbolic momentum pηp_\eta, transforms the wavefunction via a Mellin transform on to the critial line s=1/2ipηs=1/2-ip_\eta. We utilise this new transform to find quantum wavefunctions whose Hyperbolic momentum representation approximate a class of higher transcendental functions, and in particular, approximate the Riemann Zeta function. We finally give possible physical realisations to perform an indirect measurement of the Hyperbolic momentum of a quantum system on the half-line.Comment: 23 pages, 6 Figure

    Coherent States for Black Holes

    Full text link
    We determine coherent states peaked at classical space-time of the Schwarzschild black hole in the frame-work of canonical quantisation of general relativity. The information about the horizon is naturally encoded in the phase space variables, and the perturbative quantum fluctuations around the classical geometry depend on the distance from the horizon. For small black holes, space near the vicinity of the singularity appears discrete with the singular point excluded from the spectrum.Comment: 48 pages, 18+1 figures, some modifications, references adde

    Semiclassical theory for small displacements

    Full text link
    Characteristic functions contain complete information about all the moments of a classical distribution and the same holds for the Fourier transform of the Wigner function: a quantum characteristic function, or the chord function. However, knowledge of a finite number of moments does not allow for accurate determination of the chord function. For pure states this provides the overlap of the state with all its possible rigid translations (or displacements). We here present a semiclassical approximation of the chord function for large Bohr-quantized states, which is accurate right up to a caustic, beyond which the chord function becomes evanescent. It is verified to pick out blind spots, which are displacements for zero overlaps. These occur even for translations within a Planck area of the origin. We derive a simple approximation for the closest blind spots, depending on the Schroedinger covariance matrix, which is verified for Bohr-quantized states.Comment: 16 pages, 4 figures
    corecore