4 research outputs found

    Application Protocols enabling Internet of Remote Things via Random Access Satellite Channels

    Full text link
    Nowadays, Machine-to-Machine (M2M) and Internet of Things (IoT) traffic rate is increasing at a fast pace. The use of satellites is expected to play a large role in delivering such a traffic. In this work, we investigate the use of two of the most common M2M/IoT protocols stacks on a satellite Random Access (RA) channel, based on DVB-RCS2 standard. The metric under consideration is the completion time, in order to identify the protocol stack that can provide the best performance level

    Small satellites and CubeSats: survey of structures, architectures, and protocols

    Get PDF
    The space environment is still challenging but is becoming more and more attractive for an increasing number of entities. In the second half of the 20th century, a huge amount of funds was required to build satellites and gain access to space. Nowadays, it is no longer so. The advancement of technologies allows producing very small hardware components able to survive the strict conditions of the outer space. Consequently, small satellites can be designed for a wide set of missions keeping low design times, production costs, and deployment costs. One widely used type of small satellite is the CubeSat, whose different aspects are surveyed in the following: mission goals, hardware subsystems and components, possible network topologies, channel models, and suitable communication protocols. We also show some future challenges related to the employment of CubeSat networks

    On elastic traffic via contention resolution diversity slotted aloha satellite access

    No full text
    Summary This paper presents a performance study relative to the coupling of the Transmission Control Protocol (TCP) with the Contention Resolution Diversity slotted aloha (CRDSA) protocol, in the case of greedy TCP connections (also called elephants) on Digital Video Broadcasting-Return Channel via a geostationary satellite. CRDSA, which takes advantage of interference cancellation algorithms for collision/contention resolution, has already exhibited interesting performance when the power levels of all received bursts are perfectly balanced. In this paper, we extend the study to a more realistic case, where a certain spreading of the bursts' power levels is taken into account. The consequent capture effect even facilitates the collision resolution mechanism and yields an improvement in the overall TCP performance with respect to the balanced case. Furthermore, in certain conditions, the adoption of packet level forward error correction allows achieving even higher peaks of throughput than the expected ones
    corecore