3,858 research outputs found

    LCM and MCM: specification of a control system using dynamic logic and process algebra

    Get PDF
    LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was developed for the specification of object-oriented information systems, but contains sufficient facilities for the specification of control to apply it to the specification of control-intensive systems as well. In this paper, the results of such an application are reported. The paper concludes with a discussion of the need for theorem-proving support and of the extensions that would be needed to be able to specify real-time properties

    Data Abstraction Mechanisms in Sina/st

    Get PDF
    This paper describes a new data abstraction mechanism in an object-oriented model of computing. The data abstraction mechanism described here has been devised in the context of the design of Sina/st language. In Sina/st no language constructs have been adopted for specifying inheritance or delegation, but rather, we introduce simpler mechanisms that can support a wide range of code sharing strategies without selecting one among them as a language feature. Sina/st also provides a stronger data encapsulation than most of the existing object-oriented languages. This language has been implemented on the SUN 3 workstation using Smalltalk

    A survey of parallel execution strategies for transitive closure and logic programs

    Get PDF
    An important feature of database technology of the nineties is the use of parallelism for speeding up the execution of complex queries. This technology is being tested in several experimental database architectures and a few commercial systems for conventional select-project-join queries. In particular, hash-based fragmentation is used to distribute data to disks under the control of different processors in order to perform selections and joins in parallel. With the development of new query languages, and in particular with the definition of transitive closure queries and of more general logic programming queries, the new dimension of recursion has been added to query processing. Recursive queries are complex; at the same time, their regular structure is particularly suited for parallel execution, and parallelism may give a high efficiency gain. We survey the approaches to parallel execution of recursive queries that have been presented in the recent literature. We observe that research on parallel execution of recursive queries is separated into two distinct subareas, one focused on the transitive closure of Relational Algebra expressions, the other one focused on optimization of more general Datalog queries. Though the subareas seem radically different because of the approach and formalism used, they have many common features. This is not surprising, because most typical Datalog queries can be solved by means of the transitive closure of simple algebraic expressions. We first analyze the relationship between the transitive closure of expressions in Relational Algebra and Datalog programs. We then review sequential methods for evaluating transitive closure, distinguishing iterative and direct methods. We address the parallelization of these methods, by discussing various forms of parallelization. Data fragmentation plays an important role in obtaining parallel execution; we describe hash-based and semantic fragmentation. Finally, we consider Datalog queries, and present general methods for parallel rule execution; we recognize the similarities between these methods and the methods reviewed previously, when the former are applied to linear Datalog queries. We also provide a quantitative analysis that shows the impact of the initial data distribution on the performance of methods

    Specifying Logic Programs in Controlled Natural Language

    Full text link
    Writing specifications for computer programs is not easy since one has to take into account the disparate conceptual worlds of the application domain and of software development. To bridge this conceptual gap we propose controlled natural language as a declarative and application-specific specification language. Controlled natural language is a subset of natural language that can be accurately and efficiently processed by a computer, but is expressive enough to allow natural usage by non-specialists. Specifications in controlled natural language are automatically translated into Prolog clauses, hence become formal and executable. The translation uses a definite clause grammar (DCG) enhanced by feature structures. Inter-text references of the specification, e.g. anaphora, are resolved with the help of discourse representation theory (DRT). The generated Prolog clauses are added to a knowledge base. We have implemented a prototypical specification system that successfully processes the specification of a simple automated teller machine.Comment: 16 pages, compressed, uuencoded Postscript, published in Proceedings CLNLP 95, COMPULOGNET/ELSNET/EAGLES Workshop on Computational Logic for Natural Language Processing, Edinburgh, April 3-5, 199
    • …
    corecore