1,884 research outputs found

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    Bell-states diagonal entanglement witnesses for relativistic and non-relativistic multispinor systems in arbitrary dimensions

    Full text link
    Two kinds of Bell-states diagonal (BSD) entanglement witnesses (EW) are constructed by using the algebra of Dirac γ\gamma matrices in the space-time of arbitrary dimension dd, where the first kind can detect some BSD relativistic and non-relativistic mm-partite multispinor bound entangled states in Hilbert space of dimension 2md/22^{m\lfloor d/2\rfloor}, including the bipartite Bell-type and iso-concurrence type states in the four-dimensional space-time (d=4d=4). By using the connection between Hilbert-Schmidt measure and the optimal EWs associated with states, it is shown that as far as the spin quantum correlations is concerned, the amount of entanglement is not a relativistic scalar and has no invariant meaning. The introduced EWs are manipulated via the linear programming (LP) which can be solved exactly by using simplex method. The decomposability or non-decomposability of these EWs is investigated, where the region of non-decomposable EWs of the first kind is partially determined and it is shown that, all of the EWs of the second kind are decomposable. These EWs have the preference that in the bipartite systems, they can determine the region of separable states, i.e., bipartite non-detectable density matrices of the same type as the EWs of the first kind are necessarily separable. Also, multispinor EWs with non-polygon feasible regions are provided, where the problem is solved by approximate LP, and in contrary to the exactly manipulatable EWs, both the first and second kind of the optimal approximate EWs can detect some bound entangled states. Keywords: Relativistic entanglement, Entanglement Witness, Multispinor, Linear Programming, Feasible Region. PACs Index: 03.65.UdComment: 62 page

    Sparse sum-of-squares certificates on finite abelian groups

    Full text link
    Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares of functions with Fourier support T. Our combinatorial condition involves constructing a chordal cover of a graph related to G and S (the Cayley graph Cay(G^\hat{G},S)) with maximal cliques related to T. Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G. We apply our general result to two examples. First, in the case where G=Z2nG = \mathbb{Z}_2^n, by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most n/2\lceil n/2 \rceil, establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on ZN\mathbb{Z}_N (when d divides N). By constructing a particular chordal cover of the d'th power of the N-cycle, we prove that any such function is a sum of squares of functions with at most 3dlog(N/d)3d\log(N/d) nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in R2d\mathbb{R}^{2d} with N vertices can be expressed as a projection of a section of the cone of psd matrices of size 3dlog(N/d)3d\log(N/d). Putting N=d2N=d^2 gives a family of polytopes PdR2dP_d \subset \mathbb{R}^{2d} with LP extension complexity xcLP(Pd)=Ω(d2)\text{xc}_{LP}(P_d) = \Omega(d^2) and SDP extension complexity xcPSD(Pd)=O(dlog(d))\text{xc}_{PSD}(P_d) = O(d\log(d)). To the best of our knowledge, this is the first explicit family of polytopes in increasing dimensions where xcPSD(Pd)=o(xcLP(Pd))\text{xc}_{PSD}(P_d) = o(\text{xc}_{LP}(P_d)).Comment: 34 page

    A note on the minimum distance of quantum LDPC codes

    Full text link
    We provide a new lower bound on the minimum distance of a family of quantum LDPC codes based on Cayley graphs proposed by MacKay, Mitchison and Shokrollahi. Our bound is exponential, improving on the quadratic bound of Couvreur, Delfosse and Z\'emor. This result is obtained by examining a family of subsets of the hypercube which locally satisfy some parity conditions
    corecore