3 research outputs found

    The Four Bars Problem

    Full text link
    A four-bar linkage is a mechanism consisting of four rigid bars which are joined by their endpoints in a polygonal chain and which can rotate freely at the joints (or vertices). We assume that the linkage lies in the 2-dimensional plane so that one of the bars is held horizontally fixed. In this paper we consider the problem of reconfiguring a four-bar linkage using an operation called a \emph{pop}. Given a polygonal cycle, a pop reflects a vertex across the line defined by its two adjacent vertices along the polygonal chain. Our main result shows that for certain conditions on the lengths of the bars of the four-bar linkage, the neighborhood of any configuration that can be reached by smooth motion can also be reached by pops. The proof relies on the fact that pops are described by a map on the circle with an irrational number of rotation.Comment: 18 page

    On convexification of polygons by pops

    No full text
    Given a polygon P in the plane, a pop operation is the reflection of a vertex with respect to the line through its adjacent vertices. We define a family of alternating polygons, and show that any polygon from this family cannot be convexified by pop operations. This family contains simple, as well as non-simple (i.e., self-intersecting) polygons, as desired. We thereby answer in the negative an open problem posed by Demaine and O’Rourke [9, Open Problem 5.3]
    corecore