161 research outputs found

    On Convergence Rate of Scalar Hegselmann-Krause Dynamics

    Full text link
    In this work, we derive a new upper bound on the termination time of the Hegselmann-Krause model for opinion dynamics. Using a novel method, we show that the termination rate of this dynamics happens no longer than O(n3)O(n^3) which improves the best known upper bound of O(n4)O(n^4) by a factor of nn .Comment: 5 pages, 2 figures, submitted to The American Control Conference, Sep. 201

    On Endogenous Random Consensus and Averaging Dynamics

    Full text link
    Motivated by various random variations of Hegselmann-Krause model for opinion dynamics and gossip algorithm in an endogenously changing environment, we propose a general framework for the study of endogenously varying random averaging dynamics, i.e.\ an averaging dynamics whose evolution suffers from history dependent sources of randomness. We show that under general assumptions on the averaging dynamics, such dynamics is convergent almost surely. We also determine the limiting behavior of such dynamics and show such dynamics admit infinitely many time-varying Lyapunov functions

    An improved energy argument for the Hegselmann-Krause model

    Full text link
    We show that the freezing time of the dd-dimensional Hegselmann-Krause model is O(n4)O(n^4) where nn is the number of agents. This improves the best known upper bound whenever d≥2d\geq 2

    How friends and non-determinism affect opinion dynamics

    Full text link
    The Hegselmann-Krause system (HK system for short) is one of the most popular models for the dynamics of opinion formation in multiagent systems. Agents are modeled as points in opinion space, and at every time step, each agent moves to the mass center of all the agents within unit distance. The rate of convergence of HK systems has been the subject of several recent works. In this work, we investigate two natural variations of the HK system and their effect on the dynamics. In the first variation, we only allow pairs of agents who are friends in an underlying social network to communicate with each other. In the second variation, agents may not move exactly to the mass center but somewhere close to it. The dynamics of both variants are qualitatively very different from that of the classical HK system. Nevertheless, we prove that both these systems converge in polynomial number of non-trivial steps, regardless of the social network in the first variant and noise patterns in the second variant.Comment: 14 pages, 3 figure

    Optimal control of the convergence time in the Hegselmann--Krause dynamics

    Get PDF
    We study the optimal control problem of minimizing the convergence time in the discrete Hegselmann--Krause model of opinion dynamics. The underlying model is extended with a set of strategic agents that can freely place their opinion at every time step. Indeed, if suitably coordinated, the strategic agents can significantly lower the convergence time of an instance of the Hegselmann--Krause model. We give several lower and upper worst-case bounds for the convergence time of a Hegselmann--Krause system with a given number of strategic agents, while still leaving some gaps for future research.Comment: 14 page

    Generalized Opinion Dynamics from Local Optimization Rules

    Full text link
    We study generalizations of the Hegselmann-Krause (HK) model for opinion dynamics, incorporating features and parameters that are natural components of observed social systems. The first generalization is one where the strength of influence depends on the distance of the agents' opinions. Under this setup, we identify conditions under which the opinions converge in finite time, and provide a qualitative characterization of the equilibrium. We interpret the HK model opinion update rule as a quadratic cost-minimization rule. This enables a second generalization: a family of update rules which possess different equilibrium properties. Subsequently, we investigate models in which a external force can behave strategically to modulate/influence user updates. We consider cases where this external force can introduce additional agents and cases where they can modify the cost structures for other agents. We describe and analyze some strategies through which such modulation may be possible in an order-optimal manner. Our simulations demonstrate that generalized dynamics differ qualitatively and quantitatively from traditional HK dynamics.Comment: 20 pages, under revie

    The Hegselmann-Krause dynamics on the circle converge

    Full text link
    We consider the Hegselmann-Krause dynamics on a one-dimensional torus and provide the first proof of convergence of this system. The proof requires only fairly minor modifications of existing methods for proving convergence in Euclidean space.Comment: 9 pages, 2 figures. Version 2: A small error in the proof of Theorem 1.1 is corrected and an acknowledgement added. Bibliography update

    Opinion Dynamics in Heterogeneous Networks: Convergence Conjectures and Theorems

    Full text link
    Recently, significant attention has been dedicated to the models of opinion dynamics in which opinions are described by real numbers, and agents update their opinions synchronously by averaging their neighbors' opinions. The neighbors of each agent can be defined as either (1) those agents whose opinions are in its "confidence range," or (2) those agents whose "influence range" contain the agent's opinion. The former definition is employed in Hegselmann and Krause's bounded confidence model, and the latter is novel here. As the confidence and influence ranges are distinct for each agent, the heterogeneous state-dependent interconnection topology leads to a poorly-understood complex dynamic behavior. In both models, we classify the agents via their interconnection topology and, accordingly, compute the equilibria of the system. Then, we define a positive invariant set centered at each equilibrium opinion vector. We show that if a trajectory enters one such set, then it converges to a steady state with constant interconnection topology. This result gives us a novel sufficient condition for both models to establish convergence, and is consistent with our conjecture that all trajectories of the bounded confidence and influence models eventually converge to a steady state under fixed topology.Comment: 22 pages, Submitted to SIAM Journal on Control and Optimization (SICON
    • …
    corecore