7,140 research outputs found

    The Ordered Qualitative Model For Credit Rating Transitions

    Get PDF
    Information on the expected changes in credit quality of obligors is contained in credit migration matrices which trace out the movements of firms across ratings categories in a given period of time and in a given group of bond issuers. The rating matrices provided by Moody’s, Standard &Poor’s and Fitch became crucial inputs to many applications, including the assessment of risk on corporate credit portfolios (CreditVar) and credit derivatives pricing. We propose a factor probit model for modeling and prediction of credit rating matrices that are assumed to be stochastic and driven by a latent factor. The filtered latent factor path reveals the effect of the economic cycle on corporate credit ratings, and provides evidence in support of the PIT (point-in-time) rating philosophy. The factor probit model also yields the estimates of cross-sectional correlations in rating transitions that are documented empirically but not fully accounted for in the literature and in the regulatory rules established by the Basle Committee.Credit Rating, Migration, Migration Correlation, Credit Risk, Probit Model, Latent Factor, Business Cycle.

    Nonlinear shrinkage estimation of large-dimensional covariance matrices

    Full text link
    Many statistical applications require an estimate of a covariance matrix and/or its inverse. When the matrix dimension is large compared to the sample size, which happens frequently, the sample covariance matrix is known to perform poorly and may suffer from ill-conditioning. There already exists an extensive literature concerning improved estimators in such situations. In the absence of further knowledge about the structure of the true covariance matrix, the most successful approach so far, arguably, has been shrinkage estimation. Shrinking the sample covariance matrix to a multiple of the identity, by taking a weighted average of the two, turns out to be equivalent to linearly shrinking the sample eigenvalues to their grand mean, while retaining the sample eigenvectors. Our paper extends this approach by considering nonlinear transformations of the sample eigenvalues. We show how to construct an estimator that is asymptotically equivalent to an oracle estimator suggested in previous work. As demonstrated in extensive Monte Carlo simulations, the resulting bona fide estimator can result in sizeable improvements over the sample covariance matrix and also over linear shrinkage.Comment: Published in at http://dx.doi.org/10.1214/12-AOS989 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Tyler's Covariance Matrix Estimator in Elliptical Models with Convex Structure

    Full text link
    We address structured covariance estimation in elliptical distributions by assuming that the covariance is a priori known to belong to a given convex set, e.g., the set of Toeplitz or banded matrices. We consider the General Method of Moments (GMM) optimization applied to robust Tyler's scatter M-estimator subject to these convex constraints. Unfortunately, GMM turns out to be non-convex due to the objective. Instead, we propose a new COCA estimator - a convex relaxation which can be efficiently solved. We prove that the relaxation is tight in the unconstrained case for a finite number of samples, and in the constrained case asymptotically. We then illustrate the advantages of COCA in synthetic simulations with structured compound Gaussian distributions. In these examples, COCA outperforms competing methods such as Tyler's estimator and its projection onto the structure set.Comment: arXiv admin note: text overlap with arXiv:1311.059

    A data driven equivariant approach to constrained Gaussian mixture modeling

    Full text link
    Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained equivariant approach, where the class conditional covariance matrices are shrunk towards a pre-specified matrix Psi. Data-driven choices of the matrix Psi, when a priori information is not available, and the optimal amount of shrinkage are investigated. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example

    Robust Orthogonal Complement Principal Component Analysis

    Full text link
    Recently, the robustification of principal component analysis has attracted lots of attention from statisticians, engineers and computer scientists. In this work we study the type of outliers that are not necessarily apparent in the original observation space but can seriously affect the principal subspace estimation. Based on a mathematical formulation of such transformed outliers, a novel robust orthogonal complement principal component analysis (ROC-PCA) is proposed. The framework combines the popular sparsity-enforcing and low rank regularization techniques to deal with row-wise outliers as well as element-wise outliers. A non-asymptotic oracle inequality guarantees the accuracy and high breakdown performance of ROC-PCA in finite samples. To tackle the computational challenges, an efficient algorithm is developed on the basis of Stiefel manifold optimization and iterative thresholding. Furthermore, a batch variant is proposed to significantly reduce the cost in ultra high dimensions. The paper also points out a pitfall of a common practice of SVD reduction in robust PCA. Experiments show the effectiveness and efficiency of ROC-PCA in both synthetic and real data
    • …
    corecore