90 research outputs found

    tinyLTE: Lightweight, Ad-Hoc Deployable Cellular Network for Vehicular Communication

    Full text link
    The application of LTE technology has evolved from infrastructure-based deployments in licensed bands to new use cases covering ad hoc, device-to-device communications and unlicensed band operation. Vehicular communication is an emerging field of particular interest for LTE, covering in our understanding both automotive (cars) as well as unmanned aerial vehicles. Existing commercial equipment is designed for infrastructure making it unsuitable for vehicular applications requiring low weight and unlicensed band support (e.g. 5.9 GHz ITS-band). In this work, we present tinyLTE, a system design which provides fully autonomous, multi-purpose and ultra-compact LTE cells by utilizing existing open source eNB and EPC implementations. Due to its small form factor and low weight, the tinyLTE system enables mobile deployment on board of cars and drones as well as smooth integration with existing roadside infrastructure. Additionally, the standalone design allows for systems to be chained in a multi-hop configuration. The paper describes the lean and low-cost design concept and implementation followed by a performance evaluation for single and two-hop configurations at 5.9 GHz. The results from both lab and field experiments validate the feasibility of the tinyLTE approach and demonstrate its potential to even support real-time vehicular applications (e.g. with a lowest average end-to-end latency of around 7 ms in the lab experiment)

    Inband Relaying in Long Term Evolution-Advanced Networks

    Get PDF
    The set of stringent requirements for 4G radio access networks has triggered the embodiment of new small low-power nodes, e.g. relay, Femto and Pico access nodes, as part of the network infrastructure. Various types of relay nodes are currently supported in IEEE 802.16m and 3GPP LTE-Advanced, e.g. inband Layer 2 or Layer 3 nodes and outband nodes, considering different functional capabilities and backhauling characteristics. In general, relay nodes are characterized by compact physical characteristics, low power consumption, a wireless backhaul link to the core network, and relaxed installation guidelines with respect to radiation and planning regulation. In specific, inband relay nodes, the matter of this study, are Layer 3 access nodes with time-multiplexed transmission and reception on their wireless backhaul and access links, which operate on the same frequency band. These characteristics impose serious challenges on one hand, but allow for significant improvements on the other hand. In this context, the deployment flexibility of relay nodes simplifies the network planning procedure and reduces deployment costs. On the other hand, low power transmission and limited antenna capabilities result in small relay cell coverage areas which will lead to load imbalances. Besides, multiplexing backhaul and access communications on different subframes implies the need for suitable two-hop resource allocation and scheduling. Further challenges are attributed to increased interference levels compared to macrocell deployments, as well as the introduction of a new interference type known as relay-to-relay interference resulting from the misalignment of access and backhaul link dedicated subframes at different relay nodes. The research towards this thesis has addressed these challenges within 3GPP LTE-Advanced context. A feasibility study of different relaying modes is provided and the performance of relay deployments is evaluated in different propagation environments. Thereafter, simple network planning techniques are proposed to alleviate the limitations of the inband backhaul link. Further, novel techniques are investigated to address resource allocation and scheduling, load balancing and interference coordination. The performance of proposed techniques along with the energy efficiency of relay nodes is evaluated. Results show in general significant gains and validate relaying as an efficient enhancement technology

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Backhaul Link Enhancement and Radio Resource Management for Relay Deployments

    Get PDF
    Mobile networks are experiencing a dramatic increase in the data traffic. Besides, a continuously growing number of users expect mobile broadband access with the utmost in quality and ubiquitous connectivity. In this regard, multi-hop decode-and-forward relaying is a promising enhancement to existing radio access networks to fulfill the challenging requirements in a cost-efficient way and, thus, is an integral part of the Fourth Generation (4G) standards. Nevertheless, in order to fully exploit the potential benefits of relay deployments, proper radio resource management (RRM) is necessary. The research in this thesis has contributed to cellular relay deployments for future mobile networks. Concretely, we have developed key RRM concepts with a particular focus on the uplink (UL) system performance to complement the existing literature. We have demonstrated the performance of these concepts by taking Third Generation Partnership Project (3GPP) Long-Term Evolution (LTE) Release 10 and beyond (LTE-Advanced) Type 1 inband relaying as a practical framework, and by considering urban and suburban scenarios. First, by performing relay site planning (RSP) we aim at improving the quality of the wireless backhaul which is crucial for the end-to-end user performance. Then, we analyze UL power control (PC) and verify its importance and applicability in relay deployments. In this context, we propose manual and automated optimizations to tune PC parameters on all links to further enhance the system performance. Moreover, we study the energy efficiency by taking into account throughput (TP) per power consumption. Further, we investigate various resource sharing strategies among and within the links. Via proposed approaches, performance enhancement is targeted along with higher system fairness and more flexible resource allocation. In addition, we address a key issue regarding the small coverage area of an RN cell in the overlaying macrocell, which results in load imbalances, inefficient resource utilization, and increased UL inter-cell interference. Specifically, we apply practical cell range extension (CRE) techniques to cope with these drawbacks. Performance evaluations reveal that relay deployments clearly outperform macrocell-only deployments in terms of TP as well as TP per power consumption provided that proper RRM is performed. Our results also verify that the use of RSP yields substantial improvements. Furthermore, our results show that the proposed RRM concepts and the associated joint optimization strategies can fulfill the aforementioned goals while achieving significant system performance enhancements

    Interference Management of Inband Underlay Device-toDevice Communication in 5G Cellular Networks

    Get PDF
    The explosive growth of data traffic demands, emanating from smart mobile devices and bandwidth-consuming applications on the cellular network poses the need to drastically modify the cellular network architecture. A challenge faced by the network operators is the inability of the finite spectral resources to support the growing data traffic. The Next Generation Network (NGN) is expected to meet defined requirements such as massively connecting billions of devices with heterogeneous applications and services through enhanced mobile broadband networks, which provides higher data rates with improved network reliability and availability, lower end-to-end latency and increased energy efficiency. Device-to-Device (D2D) communication is one of the several emerging technologies that has been proposed to support NGN in meeting these aforementioned requirements. D2D communication leverages the proximity of users to provide direct communication with or without traversing the base station. Hence, the integration of D2D communication into cellular networks provides potential gains in terms of throughput, energy efficiency, network capacity and spectrum efficiency. D2D communication underlaying a cellular network provides efficient utilisation of the scarce spectral resources, however, there is an introduction of interference emanating from the reuse of cellular channels by D2D pairs. Hence, this dissertation focuses on the technical challenge with regards to interference management in underlay D2D communication. In order to tackle this challenge to be able to exploit the potentials of D2D communication, there is the need to answer some important research questions concerning the problem. Thus, the study aims to find out how cellular channels can be efficiently allocated to D2D pairs for reuse as an underlay to cellular network, and how mode selection and power control approaches influence the degree of interference caused by D2D pairs to cellular users. Also, the research study continues to determine how the quality of D2D communication can be maintained with factors such as bad channel quality or increased distance. In addressing these research questions, resource management techniques of mode selection, power control, relay selection and channel allocation are applied to minimise the interference caused by D2D pairs when reusing cellular channels to guarantee the Quality of Service (QoS) of cellular users, while optimally improving the number of permitted D2D pairs to reuse channels. The concept of Open loop power control scheme is examined in D2D communication underlaying cellular network. The performance of the fractional open loop power control components on SINR is studied. The simulation results portrayed that the conventional open loop power control method provides increased compensation for the path loss with higher D2D transmit power when compared with the fractional open loop power control method. Furthermore, the problem of channel allocation to minimise interference is modelled in two system model scenarios, consisting of cellular users coexisting with D2D pairs with or without relay assistance. The channel allocation problem is solved as an assignment problem by using a proposed heuristic channel allocation, random channel allocation, Kuhn-Munkres (KM) and Gale-Shapley (GS) algorithms. A comparative performance evaluation for the algorithms are carried out in the two system model scenarios, and the results indicated that D2D communication with relay assistance outperformed the conventional D2D communication without relay assistance. This concludes that the introduction of relay-assisted D2D communication can improve the quality of a network while utilising the available spectral resources without additional infrastructure deployment costs. The research work can be extended to apply an effective relay selection approach for a user mobility scenario

    Performance Analysis of LTE-Advanced Relay Node in Public Safety Communication

    Get PDF
    Relaying is emerging as one of promising radio access network techniques for LTE-Advanced networks that provide coverage extension gain with improved quality of service. It enables improved high data rate coverage for indoor environments or at the cell edge by deploying low power base station. The need for high-quality on-the-spot emergency care necessitates access to reliable broadband connectivity for emergency telemedicine services used by paramedics in the field. In a significant proportion of recorded cases, these medical emergencies would tend to occur in indoor locations. However, broadband wireless connectivity may be of low quality due to poor indoor coverage of macro-cellular public mobile networks, or may be unreliable and/or inaccessible in the case of private Wi-Fi networks. To that end, relaying is one of the optimal solution to provide required indoor coverage. This paper analyzes the use of nomadic relays that could be temporarily deployed close to a building as part of the medical emergency response. The objective is to provide improved indoor coverage for paramedics located within the building for enhanced downlink performance (throughput gain, lower outage probability). For that scenario, we propose a resource sharing algorithm based on static relay link with exclusive assigned sub-frames at the macro base station (MBS) coupled with access link prioritization for paramedic's terminals to achieve max-min fairness. Via a comprehensive system-level simulations, incorporating standard urban propagation models, the results indicate that paramedics are always able to obtain improved performance when connected via the relay enhanced cell (REC) networks rather than the MBS only

    Performance assessment of a radio access network augmented with user equipment enabled with relaying capabilities

    Get PDF
    This Master's Thesis is encompassed in a vision of a Beyond 5G (B5G) scenario, where the User Equipment is exploited not only to satisfy the specific needs of the user, but also to augment the Radio Access Network (RAN) infrastructure. The research work has consisted in studying and analysing the deployment of a network using UEs as relaying devices in order to achieve an augmented RAN that will be able to offer a better performance to the users, including higher spectral efficiency, and lower outage probability. The conducted studies have consisted in performing variations on the configuration parameters of the network, as well as characterising the relay nodes, by means of simulations. The obtained results have then been analysed, evaluating them in terms of spectral efficiency and outage probability, and a specific relay activation strategy has been proposed, which has proven to introduce improvements in the network performance

    Evolution Toward 5G Mobile Networks - A Survey on Enabling Technologies

    Get PDF
    In this paper, an extensive review has been carried out on the trends of existing as well as proposed potential enabling technologies that are expected to shape the fifth generation (5G) mobile wireless networks. Based on the classification of the trends, we develop a 5G network architectural evolution framework that comprises three evolutionary directions, namely, (1) radio access network node and performance enabler, (2) network control programming platform, and (3) backhaul network platform and synchronization. In (1), we discuss node classification including low power nodes in emerging machine-type communications, and network capacity enablers, e.g., millimeter wave communications and massive multiple-input multiple-output. In (2), both logically distributed cell/device-centric platforms, and logically centralized conventional/wireless software defined networking control programming approaches are discussed. In (3), backhaul networks and network synchronization are discussed. A comparative analysis for each direction as well as future evolutionary directions and challenges toward 5G networks are discussed. This survey will be helpful for further research exploitations and network operators for a smooth evolution of their existing networks toward 5G networks
    • …
    corecore