636 research outputs found

    On cardinality constrained cycle and path polytopes

    Full text link
    Given a directed graph D = (N, A) and a sequence of positive integers 1 <= c_1 < c_2 < ... < c_m <= |N|, we consider those path and cycle polytopes that are defined as the convex hulls of simple paths and cycles of D of cardinality c_p for some p, respectively. We present integer characterizations of these polytopes by facet defining linear inequalities for which the separation problem can be solved in polynomial time. These inequalities can simply be transformed into inequalities that characterize the integer points of the undirected counterparts of cardinality constrained path and cycle polytopes. Beyond we investigate some further inequalities, in particular inequalities that are specific to odd/even paths and cycles.Comment: 24 page

    Hamiltonian cycles and subsets of discounted occupational measures

    Full text link
    We study a certain polytope arising from embedding the Hamiltonian cycle problem in a discounted Markov decision process. The Hamiltonian cycle problem can be reduced to finding particular extreme points of a certain polytope associated with the input graph. This polytope is a subset of the space of discounted occupational measures. We characterize the feasible bases of the polytope for a general input graph GG, and determine the expected numbers of different types of feasible bases when the underlying graph is random. We utilize these results to demonstrate that augmenting certain additional constraints to reduce the polyhedral domain can eliminate a large number of feasible bases that do not correspond to Hamiltonian cycles. Finally, we develop a random walk algorithm on the feasible bases of the reduced polytope and present some numerical results. We conclude with a conjecture on the feasible bases of the reduced polytope.Comment: revised based on referees comment
    • …
    corecore