7 research outputs found

    Adaptive Network Coding for Scheduling Real-time Traffic with Hard Deadlines

    Full text link
    We study adaptive network coding (NC) for scheduling real-time traffic over a single-hop wireless network. To meet the hard deadlines of real-time traffic, it is critical to strike a balance between maximizing the throughput and minimizing the risk that the entire block of coded packets may not be decodable by the deadline. Thus motivated, we explore adaptive NC, where the block size is adapted based on the remaining time to the deadline, by casting this sequential block size adaptation problem as a finite-horizon Markov decision process. One interesting finding is that the optimal block size and its corresponding action space monotonically decrease as the deadline approaches, and the optimal block size is bounded by the "greedy" block size. These unique structures make it possible to narrow down the search space of dynamic programming, building on which we develop a monotonicity-based backward induction algorithm (MBIA) that can solve for the optimal block size in polynomial time. Since channel erasure probabilities would be time-varying in a mobile network, we further develop a joint real-time scheduling and channel learning scheme with adaptive NC that can adapt to channel dynamics. We also generalize the analysis to multiple flows with hard deadlines and long-term delivery ratio constraints, devise a low-complexity online scheduling algorithm integrated with the MBIA, and then establish its asymptotical throughput-optimality. In addition to analysis and simulation results, we perform high fidelity wireless emulation tests with real radio transmissions to demonstrate the feasibility of the MBIA in finding the optimal block size in real time.Comment: 11 pages, 13 figure

    Coding schemes for broadcast erasure channels with feedback: the two multicast case

    Get PDF
    We consider the single hop broadcast packet erasure channel (BPEC) with two multicast sessions (each of them destined to a different group of NN users) and regularly available instantaneous receiver ACK/NACK feedback. Using the insight gained from recent work on BPEC with unicast and degraded messages [1], [2], we propose a virtual queue based session-mixing algorithm, which does not rely on knowledge of channel statistics and achieves capacity for N=2N=2 and iid erasures. Since the optimal extension of this algorithm to N>2N>2 is not straightforward, we then describe a low complexity algorithm which outperforms standard timesharing for arbitrary NN and is actually asymptotically better than timesharing, for any finite NN, as the erasure probability goes to zero. We finally provide, through an information-theoretic analysis, sufficient but not necessary asymptotic conditions between NN and nn (the number of transmissions) for which the achieved sum rate, under \textit{any} coding scheme, is essentially identical to that of timesharing

    Queue stability analysis in network coded wireless multicast.

    Get PDF
    In this dissertation queue stability in wireless multicast networks with packet erasure channels is studied. Our focus is on optimizing packet scheduling so as to maximize throughput. Specifically, new queuing strategies consisting of several sub-queues are introduced, where all newly arrived packets are first stored in the main sub-queue on a first-come-first-served basis. Using the receiver feedback, the transmitter combines packets from different sub-queues for transmission. Our objective is to maximize the input rate under the queue stability constraints. Two packet scheduling and encoding algorithms have been developed. First, the optimization problem is formulated as a linear programming (LP) problem, according to which a network coding based optimal packet scheduling scheme is obtained. Second, the Lyapunov optimization model is adopted and decision variables are defined to derive a network coding based packet scheduling algorithm, which has significantly less complexity and smaller queue backlog compared with the LP solution. Further, an extension of the proposed algorithm is derived to meet the requirements of time-critical data transmission, where each packet expires after a predefined deadline and then dropped from the system. To minimize the average transmission power, we further derive a scheduling policy that simultaneously minimizes both power and queue size, where the transmitter may choose to be idle to save energy consumption. Moreover, a redundancy in the schedules is inadvertently revealed by the algorithm. By detecting and removing the redundancy we further reduce the system complexity. Finally, the simulation results verify the effectiveness of our proposed algorithms over existing works

    Cognitive Communications in White Space: Opportunistic Scheduling, Spectrum Shaping and Delay Analysis

    Get PDF
    abstract: A unique feature, yet a challenge, in cognitive radio (CR) networks is the user hierarchy: secondary users (SU) wishing for data transmission must defer in the presence of active primary users (PUs), whose priority to channel access is strictly higher.Under a common thread of characterizing and improving Quality of Service (QoS) for the SUs, this dissertation is progressively organized under two main thrusts: the first thrust focuses on SU's throughput by exploiting the underlying properties of the PU spectrum to perform effective scheduling algorithms; and the second thrust aims at another important QoS performance of the SUs, namely delay, subject to the impact of PUs' activities, and proposes enhancement and control mechanisms. More specifically, in the first thrust, opportunistic spectrum scheduling for SU is first considered by jointly exploiting the memory in PU's occupancy and channel fading. In particular, the underexplored scenario where PU occupancy presents a {long} temporal memory is taken into consideration. By casting the problem as a partially observable Markov decision process, a set of {multi-tier} tradeoffs are quantified and illustrated. Next, a spectrum shaping framework is proposed by leveraging network coding as a {spectrum shaper} on the PU's traffic. Such shaping effect brings in predictability of the primary spectrum, which is utilized by the SUs to carry out adaptive channel sensing by prioritizing channel access order, and hence significantly improve their throughput. On the other hand, such predictability can make wireless channels more susceptible to jamming attacks. As a result, caution must be taken in designing wireless systems to balance the throughput and the jamming-resistant capability. The second thrust turns attention to an equally important performance metric, i.e., delay performance. Specifically, queueing delay analysis is conducted for SUs employing random access over the PU channels. Fluid approximation is taken and Poisson driven stochastic differential equations are applied to characterize the moments of the SUs' steady-state queueing delay. Then, dynamic packet generation control mechanisms are developed to meet the given delay requirements for SUs.Dissertation/ThesisPh.D. Electrical Engineering 201
    corecore