163,703 research outputs found

    Kallikrein inhibitors

    Get PDF

    Pattern formation in the basilar papilla: evidence for cell rearrangement.

    Get PDF
    The avian basilar papilla is composed of hair and supporting cells arranged in a regular pattern in which the hair cells are surrounded and isolated from each other by supporting cell processes. This arrangement of cells, in which the apical borders of hair cells do not contact one another, may be generated by contact-mediated lateral inhibition. Little is known, however, about the way in which hair and supporting cells are organized during development. Whole mounts double-labeled with antibodies to the 275 kDa hair-cell antigen and the tight junction protein cingulin were therefore used to examine the development of cell patterns in the basilar papilla. Hair cells that contact each other at their apical borders are seen during early development, especially on embryonic days (E) 8 and 9, but are no longer observed after E12. Hair and supporting cell patterns were analyzed in three different areas of the papilla at E9 and E12. In two of these regions between E9 and E12, the ratio of supporting cells to hair cells does not change significantly, whereas there is an increase in both the number of supporting cells around each hair cell and the number of hair cells that each supporting cell contacts. In the third region examined, there is a dramatic rise in the number of supporting cells around each hair cell, which although accompanied by a small, significant increase in the ratio of supporting cells to hair cells cannot be accounted for by an increase in supporting cell numbers. These data show that a rearrangement of hair and supporting cells with respect to one another may be a fundamental process underlying the development of a regular pattern in the basilar papilla

    Agent-based computational modeling of wounded epithelial cell monolayers

    Get PDF
    Computational modeling of biological systems, or ‘in silico biology’ is an emerging tool for understanding structure and order in biological tissues. Computational models of the behavior of epithelial cells in monolayer cell culture have been developed and used to predict the healing characteristics of scratch wounds made to urothelial cell cultures maintained in low and physiological [Ca2+] environments. Both computational models and in vitro experiments demonstrated that in low exogenous [Ca2+], the closure of 500mm scratch wounds was achieved primarily by cell migration into the denuded area. The wound healing rate in low (0.09mM) [Ca2+] was approximately twice as rapid as in physiological (2mM) [Ca2+]. Computational modeling predicted that in cell cultures that are actively proliferating, no increase in the fraction of cells in S-phase would be expected, and this conclusion was supported experimentally in vitro by BrdU incorporation assay. We have demonstrated that a simple rule-based model of cell behavior, incorporating rules relating to contact inhibition of proliferation and migration, is sufficient to qualitatively predict the calcium-dependent pattern of wound closure observed in vitro. Differences between the in vitro and in silico models suggest a role for wound-induced signaling events in urothelial cell cultures

    Implementing vertex dynamics models of cell populations in biology within a consistent computational framework

    Get PDF
    The dynamic behaviour of epithelial cell sheets plays a central role during development, growth, disease and wound healing. These processes occur as a result of cell adhesion, migration, division, differentiation and death, and involve multiple processes acting at the cellular and molecular level. Computational models offer a useful means by which to investigate and test hypotheses about these processes, and have played a key role in the study of cell–cell interactions. However, the necessarily complex nature of such models means that it is difficult to make accurate comparison between different models, since it is often impossible to distinguish between differences in behaviour that are due to the underlying model assumptions, and those due to differences in the in silico implementation of the model. In this work, an approach is described for the implementation of vertex dynamics models, a discrete approach that represents each cell by a polygon (or polyhedron) whose vertices may move in response to forces. The implementation is undertaken in a consistent manner within a single open source computational framework, Chaste, which comprises fully tested, industrial-grade software that has been developed using an agile approach. This framework allows one to easily change assumptions regarding force generation and cell rearrangement processes within these models. The versatility and generality of this framework is illustrated using a number of biological examples. In each case we provide full details of all technical aspects of our model implementations, and in some cases provide extensions to make the models more generally applicable

    Konjac Bio-Molecules Assisted, Rod-Spherical shaped Lead Nano Powder Synthesized by Electrolytic Process and Its Characterization Studies

    Full text link
    Synthesis and structural characterization of Pb nanoparticles by electrolysis using a bioactive compound - konjac aqueous extract is the main aim of this study. This method is a unique, novel, low cost and double-step procedure with good reproducibility and has not been used for nanoparticles preparation so far. Konjac extract has been added to prevent the oxidation of Pb nanoparticles. Also the synthesized nanoparticles have been dried in open air to observe their stability. Various types of characterization tools like XRD, SEM, Particle Size Analyzer, TEM-EDS, DSC, AAS and FT-IR have been utilized to study characters of the end product. Anti-bacterial Studies has also been done. After completion of synthesis process that we have made an attempt to change the shape of the synthesized nanoparticles by the influence of sunbeams and to find the effects of the sunlight on nanomaterials.Comment: 37 Pages, 20 Figures, 19 Tables, 20 Equations and 64 References. arXiv admin note: text overlap with arXiv:1111.026
    • …
    corecore