1,522 research outputs found

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176

    Embedding Graphs under Centrality Constraints for Network Visualization

    Full text link
    Visual rendering of graphs is a key task in the mapping of complex network data. Although most graph drawing algorithms emphasize aesthetic appeal, certain applications such as travel-time maps place more importance on visualization of structural network properties. The present paper advocates two graph embedding approaches with centrality considerations to comply with node hierarchy. The problem is formulated first as one of constrained multi-dimensional scaling (MDS), and it is solved via block coordinate descent iterations with successive approximations and guaranteed convergence to a KKT point. In addition, a regularization term enforcing graph smoothness is incorporated with the goal of reducing edge crossings. A second approach leverages the locally-linear embedding (LLE) algorithm which assumes that the graph encodes data sampled from a low-dimensional manifold. Closed-form solutions to the resulting centrality-constrained optimization problems are determined yielding meaningful embeddings. Experimental results demonstrate the efficacy of both approaches, especially for visualizing large networks on the order of thousands of nodes.Comment: Submitted to IEEE Transactions on Visualization and Computer Graphic

    Kirchhoff Index As a Measure of Edge Centrality in Weighted Networks: Nearly Linear Time Algorithms

    Full text link
    Most previous work of centralities focuses on metrics of vertex importance and methods for identifying powerful vertices, while related work for edges is much lesser, especially for weighted networks, due to the computational challenge. In this paper, we propose to use the well-known Kirchhoff index as the measure of edge centrality in weighted networks, called θ\theta-Kirchhoff edge centrality. The Kirchhoff index of a network is defined as the sum of effective resistances over all vertex pairs. The centrality of an edge ee is reflected in the increase of Kirchhoff index of the network when the edge ee is partially deactivated, characterized by a parameter θ\theta. We define two equivalent measures for θ\theta-Kirchhoff edge centrality. Both are global metrics and have a better discriminating power than commonly used measures, based on local or partial structural information of networks, e.g. edge betweenness and spanning edge centrality. Despite the strong advantages of Kirchhoff index as a centrality measure and its wide applications, computing the exact value of Kirchhoff edge centrality for each edge in a graph is computationally demanding. To solve this problem, for each of the θ\theta-Kirchhoff edge centrality metrics, we present an efficient algorithm to compute its ϵ\epsilon-approximation for all the mm edges in nearly linear time in mm. The proposed θ\theta-Kirchhoff edge centrality is the first global metric of edge importance that can be provably approximated in nearly-linear time. Moreover, according to the θ\theta-Kirchhoff edge centrality, we present a θ\theta-Kirchhoff vertex centrality measure, as well as a fast algorithm that can compute ϵ\epsilon-approximate Kirchhoff vertex centrality for all the nn vertices in nearly linear time in mm
    • …
    corecore