3,055 research outputs found

    (Un)Decidability Results for Word Equations with Length and Regular Expression Constraints

    Full text link
    We prove several decidability and undecidability results for the satisfiability and validity problems for languages that can express solutions to word equations with length constraints. The atomic formulas over this language are equality over string terms (word equations), linear inequality over the length function (length constraints), and membership in regular sets. These questions are important in logic, program analysis, and formal verification. Variants of these questions have been studied for many decades by mathematicians. More recently, practical satisfiability procedures (aka SMT solvers) for these formulas have become increasingly important in the context of security analysis for string-manipulating programs such as web applications. We prove three main theorems. First, we give a new proof of undecidability for the validity problem for the set of sentences written as a forall-exists quantifier alternation applied to positive word equations. A corollary of this undecidability result is that this set is undecidable even with sentences with at most two occurrences of a string variable. Second, we consider Boolean combinations of quantifier-free formulas constructed out of word equations and length constraints. We show that if word equations can be converted to a solved form, a form relevant in practice, then the satisfiability problem for Boolean combinations of word equations and length constraints is decidable. Third, we show that the satisfiability problem for quantifier-free formulas over word equations in regular solved form, length constraints, and the membership predicate over regular expressions is also decidable.Comment: Invited Paper at ADDCT Workshop 2013 (co-located with CADE 2013

    The Mathematical Universe

    Full text link
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and Godel incompleteness. I hypothesize that only computable and decidable (in Godel's sense) structures exist, which alleviates the cosmological measure problem and help explain why our physical laws appear so simple. I also comment on the intimate relation between mathematical structures, computations, simulations and physical systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs; more details at http://space.mit.edu/home/tegmark/toe.htm

    Coarse-graining of cellular automata, emergence, and the predictability of complex systems

    Full text link
    We study the predictability of emergent phenomena in complex systems. Using nearest neighbor, one-dimensional Cellular Automata (CA) as an example, we show how to construct local coarse-grained descriptions of CA in all classes of Wolfram's classification. The resulting coarse-grained CA that we construct are capable of emulating the large-scale behavior of the original systems without accounting for small-scale details. Several CA that can be coarse-grained by this construction are known to be universal Turing machines; they can emulate any CA or other computing devices and are therefore undecidable. We thus show that because in practice one only seeks coarse-grained information, complex physical systems can be predictable and even decidable at some level of description. The renormalization group flows that we construct induce a hierarchy of CA rules. This hierarchy agrees well with apparent rule complexity and is therefore a good candidate for a complexity measure and a classification method. Finally we argue that the large scale dynamics of CA can be very simple, at least when measured by the Kolmogorov complexity of the large scale update rule, and moreover exhibits a novel scaling law. We show that because of this large-scale simplicity, the probability of finding a coarse-grained description of CA approaches unity as one goes to increasingly coarser scales. We interpret this large scale simplicity as a pattern formation mechanism in which large scale patterns are forced upon the system by the simplicity of the rules that govern the large scale dynamics.Comment: 18 pages, 9 figure

    A decidable policy language for history-based transaction monitoring

    Full text link
    Online trading invariably involves dealings between strangers, so it is important for one party to be able to judge objectively the trustworthiness of the other. In such a setting, the decision to trust a user may sensibly be based on that user's past behaviour. We introduce a specification language based on linear temporal logic for expressing a policy for categorising the behaviour patterns of a user depending on its transaction history. We also present an algorithm for checking whether the transaction history obeys the stated policy. To be useful in a real setting, such a language should allow one to express realistic policies which may involve parameter quantification and quantitative or statistical patterns. We introduce several extensions of linear temporal logic to cater for such needs: a restricted form of universal and existential quantification; arbitrary computable functions and relations in the term language; and a "counting" quantifier for counting how many times a formula holds in the past. We then show that model checking a transaction history against a policy, which we call the history-based transaction monitoring problem, is PSPACE-complete in the size of the policy formula and the length of the history. The problem becomes decidable in polynomial time when the policies are fixed. We also consider the problem of transaction monitoring in the case where not all the parameters of actions are observable. We formulate two such "partial observability" monitoring problems, and show their decidability under certain restrictions
    • …
    corecore