119 research outputs found

    Linear Network Coding for Two-Unicast-ZZ Networks: A Commutative Algebraic Perspective and Fundamental Limits

    Full text link
    We consider a two-unicast-ZZ network over a directed acyclic graph of unit capacitated edges; the two-unicast-ZZ network is a special case of two-unicast networks where one of the destinations has apriori side information of the unwanted (interfering) message. In this paper, we settle open questions on the limits of network coding for two-unicast-ZZ networks by showing that the generalized network sharing bound is not tight, vector linear codes outperform scalar linear codes, and non-linear codes outperform linear codes in general. We also develop a commutative algebraic approach to deriving linear network coding achievability results, and demonstrate our approach by providing an alternate proof to the previous results of C. Wang et. al., I. Wang et. al. and Shenvi et. al. regarding feasibility of rate (1,1)(1,1) in the network.Comment: A short version of this paper is published in the Proceedings of The IEEE International Symposium on Information Theory (ISIT), June 201

    Computation Over Gaussian Networks With Orthogonal Components

    Get PDF
    Function computation of arbitrarily correlated discrete sources over Gaussian networks with orthogonal components is studied. Two classes of functions are considered: the arithmetic sum function and the type function. The arithmetic sum function in this paper is defined as a set of multiple weighted arithmetic sums, which includes averaging of the sources and estimating each of the sources as special cases. The type or frequency histogram function counts the number of occurrences of each argument, which yields many important statistics such as mean, variance, maximum, minimum, median, and so on. The proposed computation coding first abstracts Gaussian networks into the corresponding modulo sum multiple-access channels via nested lattice codes and linear network coding and then computes the desired function by using linear Slepian-Wolf source coding. For orthogonal Gaussian networks (with no broadcast and multiple-access components), the computation capacity is characterized for a class of networks. For Gaussian networks with multiple-access components (but no broadcast), an approximate computation capacity is characterized for a class of networks.Comment: 30 pages, 12 figures, submitted to IEEE Transactions on Information Theor

    Interference alignment for the MIMO interference channel

    Full text link
    We study vector space interference alignment for the MIMO interference channel with no time or frequency diversity, and no symbol extensions. We prove both necessary and sufficient conditions for alignment. In particular, we characterize the feasibility of alignment for the symmetric three-user channel where all users transmit along d dimensions, all transmitters have M antennas and all receivers have N antennas, as well as feasibility of alignment for the fully symmetric (M=N) channel with an arbitrary number of users. An implication of our results is that the total degrees of freedom available in a K-user interference channel, using only spatial diversity from the multiple antennas, is at most 2. This is in sharp contrast to the K/2 degrees of freedom shown to be possible by Cadambe and Jafar with arbitrarily large time or frequency diversity. Moving beyond the question of feasibility, we additionally discuss computation of the number of solutions using Schubert calculus in cases where there are a finite number of solutions.Comment: 16 pages, 7 figures, final submitted versio
    • …
    corecore