4,708 research outputs found

    Moments of spectral functions: Monte Carlo evaluation and verification

    Full text link
    The subject of the present study is the Monte Carlo path-integral evaluation of the moments of spectral functions. Such moments can be computed by formal differentiation of certain estimating functionals that are infinitely-differentiable against time whenever the potential function is arbitrarily smooth. Here, I demonstrate that the numerical differentiation of the estimating functionals can be more successfully implemented by means of pseudospectral methods (e.g., exact differentiation of a Chebyshev polynomial interpolant), which utilize information from the entire interval (β/2,β/2)(-\beta \hbar / 2, \beta \hbar/2). The algorithmic detail that leads to robust numerical approximations is the fact that the path integral action and not the actual estimating functional are interpolated. Although the resulting approximation to the estimating functional is non-linear, the derivatives can be computed from it in a fast and stable way by contour integration in the complex plane, with the help of the Cauchy integral formula (e.g., by Lyness' method). An interesting aspect of the present development is that Hamburger's conditions for a finite sequence of numbers to be a moment sequence provide the necessary and sufficient criteria for the computed data to be compatible with the existence of an inversion algorithm. Finally, the issue of appearance of the sign problem in the computation of moments, albeit in a milder form than for other quantities, is addressed.Comment: 13 pages, 2 figure

    DVCS amplitude at tree level: Transversality, twist-3, and factorization

    Get PDF
    We study the virtual Compton amplitude in the generalized Bjorken region (q^2 -> Infinity, t small) in QCD by means of a light-cone expansion of the product of e.m. currents in string operators in coordinate space. Electromagnetic gauge invariance (transversality) is maintained by including in addition to the twist-2 operators 'kinematical' twist-3 operators which appear as total derivatives of twist-2 operators. The non-forward matrix elements of the elementary twist-2 operators are parametrized in terms of two-variable spectral functions (double distributions), from which twist-2 and 3 skewed distributions are obtained through reduction formulas. Our approach is equivalent to a Wandzura-Wilczek type approximation for the twist-3 skewed distributions. The resulting Compton amplitude is manifestly transverse up to terms of order t/q^2. We find that in this approximation the tensor amplitude for longitudinal polarization of the virtual photon is finite, while the one for transverse polarization contains a divergence already at tree level. However, this divergence has zero projection on the polarization vector of the final photon, so that the physical helicity amplitudes are finite.Comment: 34 pages, revtex, 1 eps figure included using epsf. Misprints corrected, one reference adde

    Non-Abelian brane cosmology

    Full text link
    We discuss isotropic and homogeneous D-brane-world cosmology with non-Abelian Born-Infeld (NBI) matter on the brane. In the usual Friedmann-Robertson-Walker (FRW) model the scale non-invariant NBI matter gives rise to an equation of state which asymptotes to the string gas equation p=ϵ/3p=-\epsilon/3 and ensures a start-up of the cosmological expansion with zero acceleration. We show that the same state equation in the brane-world setup leads to the Tolman type evolution as if the conformal symmetry was effectively restored. This is not precisely so in the NBI model with symmetrized trace, but the leading term in the expansion law is still the same. A cosmological sphaleron solution on the D-brane is presented.Comment: 6 pages, latex, 1 figure. Submitted to the Proceedings of the VFC workshop at JENAM2002, Portu, Portugal, 1-6 september 200

    Competing electric and magnetic excitations in backward electron scattering from heavy deformed nuclei

    Get PDF
    Important E2E2 contributions to the (e,e)(e,e^{\prime}) cross sections of low-lying orbital M1M1 excitations are found in heavy deformed nuclei, arising from the small energy separation between the two excitations with IπK=2+1I^{\pi}K = 2^+1 and 1+1^+1, respectively. They are studied microscopically in QRPA using DWBA. The accompanying E2E2 response is negligible at small momentum transfer qq but contributes substantially to the cross sections measured at θ=165\theta = 165 ^{\circ} for 0.6<qeff<0.90.6 < q_{\rm eff} < 0.9 fm1^{-1} (40Ei7040 \le E_i \le 70 MeV) and leads to a very good agreement with experiment. The electric response is of longitudinal C2C2 type for θ175\theta \le 175 ^{\circ} but becomes almost purely transverse E2E2 for larger backward angles. The transverse E2E2 response remains comparable with the M1M1 response for qeff>1.2q_{\rm eff} > 1.2 fm1^{-1} (Ei>100E_i > 100 MeV) and even dominant for Ei>200E_i > 200 MeV. This happens even at large backward angles θ>175\theta > 175 ^{\circ}, where the M1M1 dominance is limited to the lower qq region.Comment: RevTeX, 19 pages, 8 figures included Accepted for publication in Phys Rev

    Gaussian resolutions for equilibrium density matrices

    Full text link
    A Gaussian resolution method for the computation of equilibrium density matrices rho(T) for a general multidimensional quantum problem is presented. The variational principle applied to the ``imaginary time'' Schroedinger equation provides the equations of motion for Gaussians in a resolution of rho(T) described by their width matrix, center and scale factor, all treated as dynamical variables. The method is computationally very inexpensive, has favorable scaling with the system size and is surprisingly accurate in a wide temperature range, even for cases involving quantum tunneling. Incorporation of symmetry constraints, such as reflection or particle statistics, is also discussed.Comment: 4 page

    Geometry of sets of quantum maps: a generic positive map acting on a high-dimensional system is not completely positive

    Full text link
    We investigate the set a) of positive, trace preserving maps acting on density matrices of size N, and a sequence of its nested subsets: the sets of maps which are b) decomposable, c) completely positive, d) extended by identity impose positive partial transpose and e) are superpositive. Working with the Hilbert-Schmidt (Euclidean) measure we derive tight explicit two-sided bounds for the volumes of all five sets. A sample consequence is the fact that, as N increases, a generic positive map becomes not decomposable and, a fortiori, not completely positive. Due to the Jamiolkowski isomorphism, the results obtained for quantum maps are closely connected to similar relations between the volume of the set of quantum states and the volumes of its subsets (such as states with positive partial transpose or separable states) or supersets. Our approach depends on systematic use of duality to derive quantitative estimates, and on various tools of classical convexity, high-dimensional probability and geometry of Banach spaces, some of which are not standard.Comment: 34 pages in Latex including 3 figures in eps, ver 2: minor revision
    corecore