11,237 research outputs found

    Dynamical systems and forward-backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator

    Full text link
    In a Hilbert framework, we introduce continuous and discrete dynamical systems which aim at solving inclusions governed by structured monotone operators A=∂Φ+BA=\partial\Phi+B, where ∂Φ\partial\Phi is the subdifferential of a convex lower semicontinuous function Φ\Phi, and BB is a monotone cocoercive operator. We first consider the extension to this setting of the regularized Newton dynamic with two potentials. Then, we revisit some related dynamical systems, namely the semigroup of contractions generated by AA, and the continuous gradient projection dynamic. By a Lyapunov analysis, we show the convergence properties of the orbits of these systems. The time discretization of these dynamics gives various forward-backward splitting methods (some new) for solving structured monotone inclusions involving non-potential terms. The convergence of these algorithms is obtained under classical step size limitation. Perspectives are given in the field of numerical splitting methods for optimization, and multi-criteria decision processes.Comment: 25 page

    Discretization of the 3D Monge-Ampere operator, between Wide Stencils and Power Diagrams

    Get PDF
    We introduce a monotone (degenerate elliptic) discretization of the Monge-Ampere operator, on domains discretized on cartesian grids. The scheme is consistent provided the solution hessian condition number is uniformly bounded. Our approach enjoys the simplicity of the Wide Stencil method, but significantly improves its accuracy using ideas from discretizations of optimal transport based on power diagrams. We establish the global convergence of a damped Newton solver for the discrete system of equations. Numerical experiments, in three dimensions, illustrate the scheme efficiency
    • …
    corecore