59,262 research outputs found

    Space-time random walk loop measures

    Get PDF
    In this work, we investigate a novel setting of Markovian loop measures and introduce a new class of loop measures called Bosonic loop measures. Namely, we consider loop soups with varying intensity μ0 \mu\le 0 (chemical potential in physics terms), and secondly, we study Markovian loop measures on graphs with an additional "time" dimension leading to so-called space-time random walks and their loop measures and Poisson point loop processes. Interesting phenomena appear when the additional coordinate of the space-time process is on a discrete torus with non-symmetric jump rates. The projection of these space-time random walk loop measures onto the space dimensions is loop measures on the spatial graph, and in the scaling limit of the discrete torus, these loop measures converge to the so-called [Bosonic loop measures]. This provides a natural probabilistic definition of [Bosonic loop measures]. These novel loop measures have similarities with the standard Markovian loop measures only that they give weights to loops of certain lengths, namely any length which is multiple of a given length β>0 \beta> 0 which serves as an additional parameter. We complement our study with generalised versions of Dynkin's isomorphism theorem (including a version for the whole complex field) as well as Symanzik's moment formulae for complex Gaussian measures. Due to the lacking symmetry of our space-time random walks, the distributions of the occupation time fields are given in terms of complex Gaussian measures over complex-valued random fields ([B92,BIS09]. Our space-time setting allows obtaining quantum correlation functions as torus limits of space-time correlation functions.Comment: 3 figure

    Monotonicity of the logarithmic energy for random matrices

    Full text link
    It is well-known that the semi-circle law, which is the limiting distribution in the Wigner theorem, is the minimizer of the logarithmic energy penalized by the second moment. A very similar fact holds for the Girko and Marchenko--Pastur theorems. In this work, we shed the light on an intriguing phenomenon suggesting that this functional is monotonic along the mean empirical spectral distribution in terms of the matrix dimension. This is reminiscent of the monotonicity of the Boltzmann entropy along the Boltzmann equation, the monotonicity of the free energy along ergodic Markov processes, and the Shannon monotonicity of entropy or free entropy along the classical or free central limit theorem. While we only verify this monotonicity phenomenon for the Gaussian unitary ensemble, the complex Ginibre ensemble, and the square Laguerre unitary ensemble, numerical simulations suggest that it is actually more universal. We obtain along the way explicit formulas of the logarithmic energy of the mentioned models which can be of independent interest

    Multivariate limit theorems in the context of long-range dependence

    Full text link
    We study the limit law of a vector made up of normalized sums of functions of long-range dependent stationary Gaussian series. Depending on the memory parameter of the Gaussian series and on the Hermite ranks of the functions, the resulting limit law may be (a) a multivariate Gaussian process involving dependent Brownian motion marginals, or (b) a multivariate process involving dependent Hermite processes as marginals, or (c) a combination. We treat cases (a), (b) in general and case (c) when the Hermite components involve ranks 1 and 2. We include a conjecture about case (c) when the Hermite ranks are arbitrary

    Space-time random walk loop measures

    Get PDF
    In this work, we introduce and investigate two novel classes of loop measures, space–time Markovian loop measures and Bosonic loop measures, respectively. We consider loop soups with intensity (chemical potential in physics terms), and secondly, we study Markovian loop measures on graphs with an additional “time” dimension leading to so-called space–time random walks and their loop measures and Poisson point loop processes. Interesting phenomena appear when the additional coordinate of the space–time process is on a discrete torus with non-symmetric jump rates. The projection of these space–time random walk loop measures onto the space dimensions is loop measures on the spatial graph, and in the scaling limit of the discrete torus, these loop measures converge to the so-called Bosonic loop measures. This provides a natural probabilistic definition of Bosonic loop measures. These novel loop measures have similarities with the standard Markovian loop measures only that they give weights to loops of certain lengths, namely any length which is multiple of a given length which serves as an additional parameter. We complement our study with generalised versions of Dynkin’s isomorphism theorem (including a version for the whole complex field) as well as Symanzik’s moment formulae for complex Gaussian measures. Due to the lacking symmetry of our space–time random walks, the distributions of the occupation time fields are given in terms of complex Gaussian measures over complex-valued random fields [8], [10]. Our space–time setting allows obtaining quantum correlation functions as torus limits of space–time correlation functions

    Limit theory for geometric statistics of point processes having fast decay of correlations

    Full text link
    Let PP be a simple,stationary point process having fast decay of correlations, i.e., its correlation functions factorize up to an additive error decaying faster than any power of the separation distance. Let Pn:=PWnP_n:= P \cap W_n be its restriction to windows Wn:=[12n1/d,12n1/d]dRdW_n:= [-{1 \over 2}n^{1/d},{1 \over 2}n^{1/d}]^d \subset \mathbb{R}^d. We consider the statistic Hnξ:=xPnξ(x,Pn)H_n^\xi:= \sum_{x \in P_n}\xi(x,P_n) where ξ(x,Pn)\xi(x,P_n) denotes a score function representing the interaction of xx with respect to PnP_n. When ξ\xi depends on local data in the sense that its radius of stabilization has an exponential tail, we establish expectation asymptotics, variance asymptotics, and CLT for HnξH_n^{\xi} and, more generally, for statistics of the re-scaled, possibly signed, ξ\xi-weighted point measures μnξ:=xPnξ(x,Pn)δn1/dx\mu_n^{\xi} := \sum_{x \in P_n} \xi(x,P_n) \delta_{n^{-1/d}x}, as WnRdW_n \uparrow \mathbb{R}^d. This gives the limit theory for non-linear geometric statistics (such as clique counts, intrinsic volumes of the Boolean model, and total edge length of the kk-nearest neighbors graph) of α\alpha-determinantal point processes having fast decreasing kernels extending the CLTs of Soshnikov (2002) to non-linear statistics. It also gives the limit theory for geometric U-statistics of α\alpha-permanental point processes and the zero set of Gaussian entire functions, extending the CLTs of Nazarov and Sodin (2012) and Shirai and Takahashi (2003), which are also confined to linear statistics. The proof of the central limit theorem relies on a factorial moment expansion originating in Blaszczyszyn (1995), Blaszczyszyn, Merzbach, Schmidt (1997) to show the fast decay of the correlations of ξ\xi-weighted point measures. The latter property is shown to imply a condition equivalent to Brillinger mixing and consequently yields the CLT for μnξ\mu_n^\xi via an extension of the cumulant method.Comment: 62 pages. Fundamental changes to the terminology including the title. The earlier 'clustering' condition is now introduced as a notion of mixing and its connection to Brillinger mixing is remarked. Newer results for superposition of independent point processes have been adde
    corecore