196,039 research outputs found

    Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependency

    Full text link
    Increased coupling between critical infrastructure networks, such as power and communication systems, will have important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several have studied interdependent network models and reported that increased coupling can increase system vulnerability. However, these results come from models that have substantially different mechanisms of cascading, relative to those found in actual power and communication networks. This paper reports on two sets of experiments that compare the network vulnerability implications resulting from simple topological models and models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid shows a much higher level of vulnerability, relative to the contagion model. Second, we compare a model of topological cascades in coupled networks to three different physics-based models of power grids coupled to communication networks. Again, the more accurate models suggest very different conclusions. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the coupled topological model, in which zero coupling is optimal. Finally, an extreme case in which communication failures immediately cause grid failures, suggests that if systems are poorly designed, increased coupling can be harmful. Together these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems

    Information Leakage Games

    Full text link
    We consider a game-theoretic setting to model the interplay between attacker and defender in the context of information flow, and to reason about their optimal strategies. In contrast with standard game theory, in our games the utility of a mixed strategy is a convex function of the distribution on the defender's pure actions, rather than the expected value of their utilities. Nevertheless, the important properties of game theory, notably the existence of a Nash equilibrium, still hold for our (zero-sum) leakage games, and we provide algorithms to compute the corresponding optimal strategies. As typical in (simultaneous) game theory, the optimal strategy is usually mixed, i.e., probabilistic, for both the attacker and the defender. From the point of view of information flow, this was to be expected in the case of the defender, since it is well known that randomization at the level of the system design may help to reduce information leaks. Regarding the attacker, however, this seems the first work (w.r.t. the literature in information flow) proving formally that in certain cases the optimal attack strategy is necessarily probabilistic

    Node Removal Vulnerability of the Largest Component of a Network

    Full text link
    The connectivity structure of a network can be very sensitive to removal of certain nodes in the network. In this paper, we study the sensitivity of the largest component size to node removals. We prove that minimizing the largest component size is equivalent to solving a matrix one-norm minimization problem whose column vectors are orthogonal and sparse and they form a basis of the null space of the associated graph Laplacian matrix. A greedy node removal algorithm is then proposed based on the matrix one-norm minimization. In comparison with other node centralities such as node degree and betweenness, experimental results on US power grid dataset validate the effectiveness of the proposed approach in terms of reduction of the largest component size with relatively few node removals.Comment: Published in IEEE GlobalSIP 201

    Vulnerability and Protection of Critical Infrastructures

    Full text link
    Critical infrastructure networks are a key ingredient of modern society. We discuss a general method to spot the critical components of a critical infrastructure network, i.e. the nodes and the links fundamental to the perfect functioning of the network. Such nodes, and not the most connected ones, are the targets to protect from terrorist attacks. The method, used as an improvement analysis, can also help to better shape a planned expansion of the network.Comment: 4 pages, 1 figure, 3 table

    Active Virtual Network Management Prediction: Complexity as a Framework for Prediction, Optimization, and Assurance

    Full text link
    Research into active networking has provided the incentive to re-visit what has traditionally been classified as distinct properties and characteristics of information transfer such as protocol versus service; at a more fundamental level this paper considers the blending of computation and communication by means of complexity. The specific service examined in this paper is network self-prediction enabled by Active Virtual Network Management Prediction. Computation/communication is analyzed via Kolmogorov Complexity. The result is a mechanism to understand and improve the performance of active networking and Active Virtual Network Management Prediction in particular. The Active Virtual Network Management Prediction mechanism allows information, in various states of algorithmic and static form, to be transported in the service of prediction for network management. The results are generally applicable to algorithmic transmission of information. Kolmogorov Complexity is used and experimentally validated as a theory describing the relationship among algorithmic compression, complexity, and prediction accuracy within an active network. Finally, the paper concludes with a complexity-based framework for Information Assurance that attempts to take a holistic view of vulnerability analysis
    • …
    corecore