3 research outputs found

    On a hierarchy of Boolean functions hard to compute in constant depth

    Get PDF
    Any attempt to find connections between mathematical properties and complexity has a strong relevance to the field of Complexity Theory. This is due to the lack of mathematical techniques to prove lower bounds for general models of computation.\par This work represents a step in this direction: we define a combinatorial property that makes Boolean functions ''\emphhard'' to compute in constant depth and show how the harmonic analysis on the hypercube can be applied to derive new lower bounds on the size complexity of previously unclassified Boolean functions

    On a hierarchy of Boolean functions hard to compute in constant depth

    No full text
    Any attempt to find connections between mathematical properties and complexity has a strong relevance to the field of Complexity Theory. This is due to the lack of mathematical techniques to prove lower bounds for general models of computation.\par This work represents a step in this direction: we define a combinatorial property that makes Boolean functions ''\emphhard'' to compute in constant depth and show how the harmonic analysis on the hypercube can be applied to derive new lower bounds on the size complexity of previously unclassified Boolean functions

    On a hierarchy of Boolean functions hard to compute in constant depth

    Get PDF
    Any attempt to find connections between mathematical properties and complexity has a strong relevance to the field of Complexity Theory. This is due to the lack of mathematical techniques to prove lower bounds for general models of computation. This work represents a step in this direction: we define a combinatorial property that makes Boolean functions `` hard '' to compute in constant depth and show how the harmonic analysis on the hypercube can be applied to derive new lower bounds on the size complexity of previously unclassified Boolean functions
    corecore