1,484 research outputs found

    A domination algorithm for {0,1}\{0,1\}-instances of the travelling salesman problem

    Get PDF
    We present an approximation algorithm for {0,1}\{0,1\}-instances of the travelling salesman problem which performs well with respect to combinatorial dominance. More precisely, we give a polynomial-time algorithm which has domination ratio 1n1/291-n^{-1/29}. In other words, given a {0,1}\{0,1\}-edge-weighting of the complete graph KnK_n on nn vertices, our algorithm outputs a Hamilton cycle HH^* of KnK_n with the following property: the proportion of Hamilton cycles of KnK_n whose weight is smaller than that of HH^* is at most n1/29n^{-1/29}. Our analysis is based on a martingale approach. Previously, the best result in this direction was a polynomial-time algorithm with domination ratio 1/2o(1)1/2-o(1) for arbitrary edge-weights. We also prove a hardness result showing that, if the Exponential Time Hypothesis holds, there exists a constant CC such that n1/29n^{-1/29} cannot be replaced by exp((logn)C)\exp(-(\log n)^C) in the result above.Comment: 29 pages (final version to appear in Random Structures and Algorithms

    Embedding graphs having Ore-degree at most five

    Get PDF
    Let HH and GG be graphs on nn vertices, where nn is sufficiently large. We prove that if HH has Ore-degree at most 5 and GG has minimum degree at least 2n/32n/3 then HG.H\subset G.Comment: accepted for publication at SIAM J. Disc. Mat

    Counting Hamilton cycles in sparse random directed graphs

    Full text link
    Let D(n,p) be the random directed graph on n vertices where each of the n(n-1) possible arcs is present independently with probability p. A celebrated result of Frieze shows that if p(logn+ω(1))/np\ge(\log n+\omega(1))/n then D(n,p) typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in D(n,p) is typically n!(p(1+o(1)))nn!(p(1+o(1)))^{n}. We also prove a hitting-time version of this statement, showing that in the random directed graph process, as soon as every vertex has in-/out-degrees at least 1, there are typically n!(logn/n(1+o(1)))nn!(\log n/n(1+o(1)))^{n} directed Hamilton cycles

    Hamiltonicity thresholds in Achlioptas processes

    Full text link
    In this paper we analyze the appearance of a Hamilton cycle in the following random process. The process starts with an empty graph on n labeled vertices. At each round we are presented with K=K(n) edges, chosen uniformly at random from the missing ones, and are asked to add one of them to the current graph. The goal is to create a Hamilton cycle as soon as possible. We show that this problem has three regimes, depending on the value of K. For K=o(\log n), the threshold for Hamiltonicity is (1+o(1))n\log n /(2K), i.e., typically we can construct a Hamilton cycle K times faster that in the usual random graph process. When K=\omega(\log n) we can essentially waste almost no edges, and create a Hamilton cycle in n+o(n) rounds with high probability. Finally, in the intermediate regime where K=\Theta(\log n), the threshold has order n and we obtain upper and lower bounds that differ by a multiplicative factor of 3.Comment: 23 page

    Power of kk Choices in the Semi-Random Graph Process

    Full text link
    The semi-random graph process is a single player game in which the player is initially presented an empty graph on nn vertices. In each round, a vertex uu is presented to the player independently and uniformly at random. The player then adaptively selects a vertex vv, and adds the edge uvuv to the graph. For a fixed monotone graph property, the objective of the player is to force the graph to satisfy this property with high probability in as few rounds as possible. In this paper, we introduce a natural generalization of this game in which kk random vertices u1,,uku_1, \ldots, u_k are presented to the player in each round. She needs to select one of the presented vertices and connect to any vertex she wants. We focus on the following three monotone properties: minimum degree at least \ell, the existence of a perfect matching, and the existence of a Hamiltonian cycle.Comment: 18 page
    corecore