2,008 research outputs found

    H_2-Optimal Decentralized Control over Posets: A State-Space Solution for State-Feedback

    Full text link
    We develop a complete state-space solution to H_2-optimal decentralized control of poset-causal systems with state-feedback. Our solution is based on the exploitation of a key separability property of the problem, that enables an efficient computation of the optimal controller by solving a small number of uncoupled standard Riccati equations. Our approach gives important insight into the structure of optimal controllers, such as controller degree bounds that depend on the structure of the poset. A novel element in our state-space characterization of the controller is a remarkable pair of transfer functions, that belong to the incidence algebra of the poset, are inverses of each other, and are intimately related to prediction of the state along the different paths on the poset. The results are illustrated by a numerical example.Comment: 39 pages, 2 figures, submitted to IEEE Transactions on Automatic Contro

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    Distributed Design for Decentralized Control using Chordal Decomposition and ADMM

    Full text link
    We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADMM). We first apply a classical parameterization technique to restrict the optimal decentralized control into a convex problem that inherits the sparsity pattern of the original problem. The parameterization relies on a notion of strongly decentralized stabilization, and sufficient conditions are discussed to guarantee this notion. Then, chordal decomposition allows us to decompose the convex restriction into a problem with partially coupled constraints, and the framework of ADMM enables us to solve the decomposed problem in a distributed fashion. Consequently, the subsystems only need to share their model data with their direct neighbours, not needing a central computation. Numerical experiments demonstrate the effectiveness of the proposed method.Comment: 11 pages, 8 figures. Accepted for publication in the IEEE Transactions on Control of Network System

    Optimal Decentralized State-Feedback Control with Sparsity and Delays

    Full text link
    This work presents the solution to a class of decentralized linear quadratic state-feedback control problems, in which the plant and controller must satisfy the same combination of delay and sparsity constraints. Using a novel decomposition of the noise history, the control problem is split into independent subproblems that are solved using dynamic programming. The approach presented herein both unifies and generalizes many existing results

    Decentralized Implementation of Centralized Controllers for Interconnected Systems

    Get PDF
    Given a centralized controller associated with a linear time-invariant interconnected system, this paper is concerned with designing a parameterized decentralized controller such that the state and input of the system under the obtained decentralized controller can become arbitrarily close to those of the system under the given centralized controller, by tuning the controller's parameters. To this end, a two-level decentralized controller is designed, where the upper level captures the dynamics of the centralized closed-loop system, and the lower level is an observed-based sub-controller designed based on the new notion of structural initial value observability. The proposed method can decentralize every generic centralized controller, provided the interconnected system satisfies very mild conditions. The efficacy of this work is elucidated by some numerical examples

    On synthesizing partially decentralized controllers

    Get PDF
    Includes bibliographical references (p. 25).Supported by IRAD funds from the C.S. Draper Laboratory, Inc.Jose E. Lopez, Michael Athans
    corecore