67 research outputs found

    Nested recursions with ceiling function solutions

    Full text link
    Consider a nested, non-homogeneous recursion R(n) defined by R(n) = \sum_{i=1}^k R(n-s_i-\sum_{j=1}^{p_i} R(n-a_ij)) + nu, with c initial conditions R(1) = xi_1 > 0,R(2)=xi_2 > 0, ..., R(c)=xi_c > 0, where the parameters are integers satisfying k > 0, p_i > 0 and a_ij > 0. We develop an algorithm to answer the following question: for an arbitrary rational number r/q, is there any set of values for k, p_i, s_i, a_ij and nu such that the ceiling function ceiling{rn/q} is the unique solution generated by R(n) with appropriate initial conditions? We apply this algorithm to explore those ceiling functions that appear as solutions to R(n). The pattern that emerges from this empirical investigation leads us to the following general result: every ceiling function of the form ceiling{n/q}$ is the solution of infinitely many such recursions. Further, the empirical evidence suggests that the converse conjecture is true: if ceiling{rn/q} is the solution generated by any recursion R(n) of the form above, then r=1. We also use our ceiling function methodology to derive the first known connection between the recursion R(n) and a natural generalization of Conway's recursion.Comment: Published in Journal of Difference Equations and Applications, 2010. 11 pages, 1 tabl

    Solving Non-homogeneous Nested Recursions Using Trees

    Full text link
    The solutions to certain nested recursions, such as Conolly's C(n) = C(n-C(n-1))+C(n-1-C(n-2)), with initial conditions C(1)=1, C(2)=2, have a well-established combinatorial interpretation in terms of counting leaves in an infinite binary tree. This tree-based interpretation, which has a natural generalization to a k-term nested recursion of this type, only applies to homogeneous recursions, and only solves each recursion for one set of initial conditions determined by the tree. In this paper, we extend the tree-based interpretation to solve a non-homogeneous version of the k-term recursion that includes a constant term. To do so we introduce a tree-grafting methodology that inserts copies of a finite tree into the infinite k-ary tree associated with the solution of the corresponding homogeneous k-term recursion. This technique can also be used to solve the given non-homogeneous recursion with various sets of initial conditions.Comment: 14 page

    Pacifying the Fermi-liquid: battling the devious fermion signs

    Full text link
    The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics are self consistently translated into a geometrical constraint structure (the {\em nodal hypersurface}) acting on an effective bosonic dynamics. As an illustrative example we use this formalism to study 1+1-dimensional systems, where statistics are irrelevant, and hence the sign problem can be circumvented. In this low-dimensional example, the structure of the nodal constraints leads to a lucid picture of the entropic interaction essential to one-dimensional physics. Working with the path integral in momentum space, we then show that the Fermi gas can be understood by analogy to a Mott insulator in a harmonic trap. Going back to real space, we discuss the topological properties of the nodal cells, and suggest a new holographic conjecture relating Fermi liquids in higher dimensions to soft-core bosons in one dimension. We also discuss some possible connections between mixed Bose/Fermi systems and supersymmetry.Comment: 28 pages, 5 figure

    An Undecidable Nested Recurrence Relation

    Full text link

    On Dynamics of Integrate-and-Fire Neural Networks with Conductance Based Synapses

    Get PDF
    We present a mathematical analysis of a networks with Integrate-and-Fire neurons and adaptive conductances. Taking into account the realistic fact that the spike time is only known within some \textit{finite} precision, we propose a model where spikes are effective at times multiple of a characteristic time scale δ\delta, where δ\delta can be \textit{arbitrary} small (in particular, well beyond the numerical precision). We make a complete mathematical characterization of the model-dynamics and obtain the following results. The asymptotic dynamics is composed by finitely many stable periodic orbits, whose number and period can be arbitrary large and can diverge in a region of the synaptic weights space, traditionally called the "edge of chaos", a notion mathematically well defined in the present paper. Furthermore, except at the edge of chaos, there is a one-to-one correspondence between the membrane potential trajectories and the raster plot. This shows that the neural code is entirely "in the spikes" in this case. As a key tool, we introduce an order parameter, easy to compute numerically, and closely related to a natural notion of entropy, providing a relevant characterization of the computational capabilities of the network. This allows us to compare the computational capabilities of leaky and Integrate-and-Fire models and conductance based models. The present study considers networks with constant input, and without time-dependent plasticity, but the framework has been designed for both extensions.Comment: 36 pages, 9 figure
    corecore