159,345 research outputs found

    Quantum Stochastic Positive Evolutions: Characterization, Construction, Dilation

    Full text link
    A characterization of the unbounded stochastic generators of quantum completely positive flows is given. This suggests the general form of quantum stochastic adapted evolutions with respect to the Wiener (diffusion), Poisson (jumps), or general Quantum Noise. The corresponding irreversible Heisenberg evolution in terms of stochastic completely positive (CP) maps is constructed. The general form and the dilation of the stochastic completely dissipative (CD) equation over the algebra L(H) is discovered, as well as the unitary quantum stochastic dilation of the subfiltering and contractive flows with unbounded generators. A unitary quantum stochastic cocycle, dilating the subfiltering CP flows over L(H), is reconstructed.Comment: 33 page

    Quantum Stochastic Calculus and Quantum Gaussian Processes

    Full text link
    In this lecture we present a brief outline of boson Fock space stochastic calculus based on the creation, conservation and annihilation operators of free field theory, as given in the 1984 paper of Hudson and Parthasarathy. We show how a part of this architecture yields Gaussian fields stationary under a group action. Then we introduce the notion of semigroups of quasifree completely positive maps on the algebra of all bounded operators in the boson Fock space Γ(Cn)\Gamma (\mathbb{C}^n) over Cn.\mathbb{C}^n. These semigroups are not strongly continuous but their preduals map Gaussian states to Gaussian states. They were first introduced and their generators were shown to be of the Lindblad type by Vanheuverzwijn. They were recently investigated in the context of quantum information theory by Heinosaari, Holevo and Wolf. Here we present the exact noisy Schr\"odinger equation which dilates such a semigroup to a quantum Gaussian Markov process

    Wavelets in Banach Spaces

    Full text link
    We describe a construction of wavelets (coherent states) in Banach spaces generated by ``admissible'' group representations. Our main targets are applications in pure mathematics while connections with quantum mechanics are mentioned. As an example we consider operator valued Segal-Bargmann type spaces and the Weyl functional calculus. Keywords: Wavelets, coherent states, Banach spaces, group representations, covariant, contravariant (Wick) symbols, Heisenberg group, Segal-Bargmann spaces, Weyl functional calculus (quantization), second quantization, bosonic field.Comment: 37 pages; LaTeX2e; no pictures; 27/07/99: many small correction
    corecore