8,336 research outputs found

    Vector Bin Packing with Multiple-Choice

    Full text link
    We consider a variant of bin packing called multiple-choice vector bin packing. In this problem we are given a set of items, where each item can be selected in one of several DD-dimensional incarnations. We are also given TT bin types, each with its own cost and DD-dimensional size. Our goal is to pack the items in a set of bins of minimum overall cost. The problem is motivated by scheduling in networks with guaranteed quality of service (QoS), but due to its general formulation it has many other applications as well. We present an approximation algorithm that is guaranteed to produce a solution whose cost is about lnD\ln D times the optimum. For the running time to be polynomial we require D=O(1)D=O(1) and T=O(logn)T=O(\log n). This extends previous results for vector bin packing, in which each item has a single incarnation and there is only one bin type. To obtain our result we also present a PTAS for the multiple-choice version of multidimensional knapsack, where we are given only one bin and the goal is to pack a maximum weight set of (incarnations of) items in that bin

    Optimal Placement Algorithms for Virtual Machines

    Full text link
    Cloud computing provides a computing platform for the users to meet their demands in an efficient, cost-effective way. Virtualization technologies are used in the clouds to aid the efficient usage of hardware. Virtual machines (VMs) are utilized to satisfy the user needs and are placed on physical machines (PMs) of the cloud for effective usage of hardware resources and electricity in the cloud. Optimizing the number of PMs used helps in cutting down the power consumption by a substantial amount. In this paper, we present an optimal technique to map virtual machines to physical machines (nodes) such that the number of required nodes is minimized. We provide two approaches based on linear programming and quadratic programming techniques that significantly improve over the existing theoretical bounds and efficiently solve the problem of virtual machine (VM) placement in data centers

    Improved approximation bounds for Vector Bin Packing

    Full text link
    In this paper we propose an improved approximation scheme for the Vector Bin Packing problem (VBP), based on the combination of (near-)optimal solution of the Linear Programming (LP) relaxation and a greedy (modified first-fit) heuristic. The Vector Bin Packing problem of higher dimension (d \geq 2) is not known to have asymptotic polynomial-time approximation schemes (unless P = NP). Our algorithm improves over the previously-known guarantee of (ln d + 1 + epsilon) by Bansal et al. [1] for higher dimensions (d > 2). We provide a {\theta}(1) approximation scheme for certain set of inputs for any dimension d. More precisely, we provide a 2-OPT algorithm, a result which is irrespective of the number of dimensions d.Comment: 15 pages, 3 algorithm

    Probabilistic analysis of algorithms for dual bin packing problems

    Get PDF
    In the dual bin packing problem, the objective is to assign items of given size to the largest possible number of bins, subject to the constraint that the total size of the items assigned to any bin is at least equal to 1. We carry out a probabilistic analysis of this problem under the assumption that the items are drawn independently from the uniform distribution on [0, 1] and reveal the connection between this problem and the classical bin packing problem as well as to renewal theory.

    Online Bin Covering: Expectations vs. Guarantees

    Full text link
    Bin covering is a dual version of classic bin packing. Thus, the goal is to cover as many bins as possible, where covering a bin means packing items of total size at least one in the bin. For online bin covering, competitive analysis fails to distinguish between most algorithms of interest; all "reasonable" algorithms have a competitive ratio of 1/2. Thus, in order to get a better understanding of the combinatorial difficulties in solving this problem, we turn to other performance measures, namely relative worst order, random order, and max/max analysis, as well as analyzing input with restricted or uniformly distributed item sizes. In this way, our study also supplements the ongoing systematic studies of the relative strengths of various performance measures. Two classic algorithms for online bin packing that have natural dual versions are Harmonic and Next-Fit. Even though the algorithms are quite different in nature, the dual versions are not separated by competitive analysis. We make the case that when guarantees are needed, even under restricted input sequences, dual Harmonic is preferable. In addition, we establish quite robust theoretical results showing that if items come from a uniform distribution or even if just the ordering of items is uniformly random, then dual Next-Fit is the right choice.Comment: IMADA-preprint-c
    corecore